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SUMMARY

OBJECTIVE

The main objectives of this research program are
(1) to obtain an analytical solution for the nonlinear
response and ultimate loads of two hinged reinforced
concrete circular arches, subjected to static and dynamic
loads; (2) to determine experimentally the static and
dynamic ultimate loads of two-hinged semicircular reinforced
concrete arches under certain typical loading conditions
and {3) to estimate experimentally as well as analytically
the values of the ductility factor p at failure, n
being defined as the ratio of maximum deflection at failure
to the elastlic 1limit deflection,

The nonlinearity of the response 1s due to the
nonlinear stress-strain curve of concrete and also due to
the effect of large deflections on the strains and
equilibrium of an element of the arch.

SCOPE

The analytical part of thils research program
includes the formulation of the governing equations and
boundary conditions for both static and dynamic cases,
taking into account the nonlinear stress-strain curve of
concrete and the effects of large deformations on the
strains and equilibrium of the arch element, The governing
equations are obviously nonlinear and discontinuous and
are solved by numerical methods, Programs for the IBM 7090
digital computer are prepared for computing the response
and the ultimate loads, using these numerical methods,

The experimental program includes the testing

of small scale semi-circular arches to determine the
statlc and dynamic ultimate loads and the ductility factor pn




for the following loading conditions:

1., Uniformly distributed symmetric radial loads,

2, A concentrated load at the crown,

3. Antisymmetric concentrated loads at quarter
points,

CONCLUSIONS

The experimental and analytical studies indicate
that the approximate conventlonal theory based on limit
analysis 1s quite adequate to predict the static ultimate
loads of the underreinforced arches., The dynamic ultimate
loads for compression mode loading can also be predicated
by approximate theory provided that an appropriate dyhamic
increase factor (based on the ilncrease in material proper-
ties) is used. However, it is not clear whether a
satisfactory approximate theory can be developed to predict
the ultimate dynamic load carrying capacity of the arch,

ab

subjected to a concentrated dynamic load at the crown or
antisymmetric concentrated dynamic loads at quarter points,

The experimental and analytical investigations
also indicate that the natural periods of the arches have
a significant Influence on the dynhamic load carrying
capaclty of the arches in the cases of a concsutrated
load at the crown and antisymmetric concentrated loads =
at quarter points. The mode of failure under both static
and dynamic loads 1s quite ductile in these cases as
compared to the compression mode loading.

i1
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CHAPTER 1

INTRODUCTION

l.1 OBJECTIVE
This research program has the following threefold
objectives: @
a) To obtaln an analytical solution for the non-
linear response and the ultimate loads of two-hinged

circular reinforced concrete arches under static and

dynamic loading. The nénlinearity of the response is
obtained by including the effects of the nonlinear stress-
strain curve of concrete under compression and those of
large deflections on the strains and the equilibrium of

an element of the arch.

b) To determine experimentally the static and dynamic
ultimate loads of two-hinged semlcircular reinforced concrete
arches under certain conditions of loading.

¢) To obtain the anglytical and the experimental values
of the ductility-factor AA at faillure, Ak being defined
a3 the ratio of the maximum deflectlion at fallure to the
elastic 1imit deflection.(Refer to § 2.6)

1.2 PREVIOUS WORK

1.2.1 Analytical Work: . :

2% . . . .
In 1932, Cross and Morgan(l) summarized .

# Superscripted numbers in pafentheses refer to
references given in.the bibliography.




*®

methods of analysis and design of reinforced concrete arches
under statlc loading. These methods were based on the con-
ventional linear elastic theory for reinforced concrete
structures. In 1951, a special committee of the American

(2)

Concrete Institute pubf%shed a joint report on plaln and

reinforced concrete arches. This report recommends a

'numefical procedure to account for the moments caused by the

axlal thrust and the deflection of the arch. It also suggests

the. use of Whitney's stress block method for obtaining the

. ultimate strength of the cross-section of the arch. In

(3)

1953, Onat and Prager published a paper concerning limit
analysis of arches construdtég from homogeneous elastic-

plastic materials. This paper proposes a theory to account

~for the reduction of the plastic moment of a section which

1s subjected to both a moment and a thrust. However, since

in this paper the properties of materials are considered to

be identical in compression and tension, the proposed theory
cannot be applled to rginforced concrete arches. In 1960,

Jain publlshed a paper(u) on ultimate strength of relnforced

concrete arches. 'In this paper the author has employed a




bilinear elastic-plastic stress-strain curve for concrete
and obtained the ultimate loads making use of an iterative
procedure to account for large plastic defcrmations of the

“
arch.

In the fl&ld of dynamlec response, Love(S)

has
presented the mathematical formulation of the vibration of
a circular elastic ring and obtalned the normal functions
of free vibrations. 1In 1960, Eppink and Veletsos published a
paper(é) on dynamic analysis of circular elastic arches. Later
this work was continued to Iinclude inelastic effects(7). The
authors have considered a material with bilinear strees-
strain curve and identical properties In compression and
tension. They have developed a set of governing equations to
include the efflects of large deflectlons and have used a
numerical method to solve these equations.

l.2.2 Experimental Work:

A series of large scale static %tests on reinférced

(15)

concrete arch ribs

(16)

and three span reinforced concrete
arch bridges were conducted by Wilson. In this work
the measured values of the reactlions and stresses due to
unlt loads were found to be in close agreement with the
theoretical values based on linear elastic theory. Jain(u)
tested two-hinged reinforced concrete arches to fallure and

showed good agreement between results obtalned fmom the

tests and those obtalned by using his proposed theory.

-3~




In the fleld of dynamic testing Technical Report
No. 2-590 of Corps of Engineers discusses the results of
tests conducted on underground and buried fixed-end and
two-hinged reinforced concrete arches. This test program
was a part of operation PLUMBBOB in 1957.

1.3 SCOPE
1.3.1 Analytical Study:

A set of equatlions and boundary conditlons governing
the behavior of a reinforced concrete arch are formulated.
The equatlons are derived from the conditlions of equilibrium,
strain-displacement relations and force-strain relations.

The equations In cases of the static and the dynamlc response
differ in that in the latter case, the equilibrlum equatlions
include the effects of inertial forces and the dynamic
propertles of both concrete and steel are used to obtailn the
force-strain relatlions.

A simultaneous solution of the governing equations
yields the response of the reinforced concrete arch. The
equations being nonlinear and discontinuous” they are solved
by numerical methods. Programs for the IBM 7090 digital
computer are prepared for computing the response using these

methods. The ultimate load of the arch 1s obtalned as a load

¥Phe force-strain relations are discontinuous since they conslist
of three groups (Figs. 2.5b, 2.5c, and 2.5d), each valid for

a different strain distribution.

-l




under which the maximum compressive strain in the arch resches
cr exceeds the ultimate strain e of concrete. The small
reserve strength which exfsts in the arch at this stage 1is
neglected. Because of the particular definition of ultimate
load used in this work, the analytlcal methods developed
can predict the ultimate loads of only the following types
of loadings: * -

a) Uniformly distributed compression mode

P
loading ® &

®
b) Anti-symmetrically distributed deflection‘
mode loading
and c¢) Symmetrical and antisymmetrical concen%bated'.
loads except a single concentrated load
at the crown. This asggct is discnsséd_in
detail in § 2.1.3. . B
1.3.2 Experimental Study:
The scope of the experimental program included the
testing of small scale model arches and the determination 6f
the sbtatic and dynamic ultimate loads and the ductility-
factor a4 at failure for the following conditions of loading:
a) Uniformly distributed symmetric radial loads
b) A concentrated load at the crown |
and c¢) Antisymmetric concentrated loads at
guarter points.

In the dynamic cases, a fallure load_pﬁlse of trlangular shape




having a rise time between ten and twenty milliseconds was

applied. Dynamic tests were also conducted under partial

loads for the uniformly distributed symmetrlcal loading case.
1.3.3 Comparison of Analytlical and Experimental Studies:

Within the scope outlined above a comparison

~between analytical and experimental investigations 1is obtalned.

Also, the sg%tic and dynamic behaviors of two-hinged reinforced

" conerete arches are compared.




CHAPTER 2

THEORETICAL INVESTIGATION

2.1 MATERIAL PROPERTIES

In this article the nonlinearity of the stress-strain
curve of concrete under compressive loading is dlscussed.
Aiso the effects of rapld rates of strainlng on both concrete
ané reinforcing steel are presented herein.

2.1.1 Concrete:

a) Static Behavior: A typical stress-strain

curve for a concrete cylinder under static compressive loading

is shown in Filg. 2.1. Hognestad(a)

suggested that Ritter's
parabola was a good approximation for the curve up to ultimate
stress and that Inge Lyse's equation for the initlal tangent
modulus was satisfactory, provided that fé in that eguation
was replaced by 0.85 f;. Hognestad assumed the descending
portion of the curve to be a stralght line. However, the
shape and the extent of this portion of the curve is both
uncertain and difficult to measure. Hence, Hognestad's

expressions are used to describe the stress-strain curve

upto fallure. The expressions aré

n [

§f = os8s5f¢ (2-1a)
c c
"
Esoc = lEc = 1800000 + 460 #c Psi. C2.b)
-7-




e = £ (2-‘(‘.)
C EQ
" -26 2

f=f | = _ (.f.c_ 2.1 d>

c c e/ e/

[4 [4
and €, = 0.0038 C2.1 )
where f; = QStatic ultimate stress of

concrete obtained from
cylinder tests

e = Strain cgrresponding to
stress fb

eq = 3Static ultimate strain of
concrete

soc¢ Static initial tangent
modulus of concrete

and f¢ and ec = Corresponding stress and
" strain on the static curve

- D\-nam'-c

-
£
g

apY Static
vi
Vi

Strain ec and €

Figure 2.1 Static and Dynamic Stress-Strain
Curves for Concrete

8-




The tenslle stresses in concrete under static
loading are neglected.

b) Dynamic Behavior: A typical stress-strain
curve for a concrete cylinder under compressive loading with
a rapld strain rate 1ls also shown in Fig. 2.1. Watstein(g)
compared the compressive strengths of concrete cylinders
tested at rates of strain varylng from a low value of

10‘6

in./(in.)(sec.) to a very high value of 10 in./(in.)(sec.).
His work Indicates that, with very high rates of strain, the
dynamic ultimate strength can be much greater than the statlc

ultimate strength. Yang, et al(lo)

suggest that the parémeters
associated with the dynamic stress-strailn curve may be )

obtained by using

£ e .
d¢ = < . . (2.2 q) . )
e’ e '
dc (= .
/ e 2
e - :_. - _ac N ¢ -
dc ec |+ 300 ( lo.g\ é ) (2.2‘5) L
c . .
= - 2.2
and Ecloc E’soc Ec. ¢ <)
-9-




®

~ to be negligible.

where t = Dynamlc ultimate stress of
concrete obtalned from cylinder
tests conducted at rapid straln

rates
1 1"
®4c = Strain corresponding to stress fdc
Edoc = Dynamic inltial tangent modulus
of concrete
édc - = Dynamic strain rate of concrete
éC = Static straln rate of concrete
.- Making use of relations simllar to those used for’
static behavior we obtain the following expressions? T
f// ' ’ . K . '
= 0.85¢ . "(2-
de © . de - 7 . (2 3.9)
2e 2 _ .
f = \eﬂ de - _ €ac
de¢ de ’ ’ »(2‘35)
e e :
de d¢ .
where £ 408nd 840 = Corresponding stress and
: -0 strain on.the dynamic curve
and ®3u = Dynamlc ultimate strain of

concrete.

Stress-strain curve for unloadlng and reloading of
concrete 1s assumed to be the same as that for the initial

loading. Also, the tensile stresses in concrete are assumed

-10-




2.1.2 Relnforcing Steel:
a) Static Behavior: The stress-strailn curve for
steel under statle compressive and tensile loading 14 shown
in Filg. 2.2. The following expressions are used to describe

the stress-straln relation.

f =E e £ e L e
s s s or €< ¢,
. (2.4)
and #s = {’y for e >e
where T = 8tatic yield stress of steel
ey = Static yleld strain of steeél
Es = Modulus of elasticity of steel
and fsand e = Corresponding stress and strain
: on the static curve.
A
A7 S
» dy | { /
-~ / Voo Un\oadinj and
T 4+ 1 Reloadi
; 3 { cloadiing
o :
a .
M — S\‘cﬁ-c
S
7] _——-- D_ynqm;c
e e >
J ay

Stroin € and @
s ds

Filgure 2.2 Static and Dynamic Stress-Strain Curves
for Steel

-11-




b) Dynamic Behavior: The effect of rapid strain

rates 1ls to Increase the yleld stress of steel above the

values obtalned under static loading. The modulus of elasticity

remains practically unaffected. Figure 2.5 of Ref.(ll) shows
the effect of strain rate on the dynamic yleld stress of
steel. It can be seen that for both structural and inter-
medlate grades, the increase In the yileld stress above the
static value varies between 20 and L,0% when the time to reach
this yield stress varies between 0.001 and 0.1 seconds.
Hence in thls work the dynamic yield stress 1is assumed to be
30% larger than the static yleld stress. Behavior of steel
in tenslon and compression 1s assumed %o be identical.

The dynamic stress-strain curve for steel 1is
also shown in Fig. 2.2. The following expressions describe

the stress-strain relationship.

£f -E ¢
ds s 4s for eds < ed_y
(2.5)
and £ = f for e >e
ds dy ds dy

The stress-strain curve for unloading 1is
assumed to be linear (Fig. 2.2), the slope being equal to E33

The reloading curve 1s assumed to be linear
with a slope equal to Es when the dynamic strain is less than

the previous maximum dynamic stralnj; however, when the dynamic

=12~




strain 1s greater than the previous maximum dynamic strain,
the reloading curve is assumed to be indentical with the
initial loading curve.

2.1.3 Fallure Criterion:

A fallure criterion based on excessive compressive
strain in concrete has been used. It 1s assumed that failure
occurs when at any section of the arch the combination of
the fthrust and the moment produces a compressive strain
which exceeds the ultimate strain for concrete, e Such
a criterion would indicate fallure when the straln in the
extreme flbre of any section becomes greater than ey

This crlterion neglects a certain reserve strength
in the structure because even after the straln in the extreme
fibre exceeds e, the inner fibres up to the neutral'axisgg
have low compressive strains. Further, in a‘staticaily
Iindeterminate structure, more sections than one have to
fall before the structure collapses. If the load distribu-
tion on the structure 13 such that the fallure of the ﬂecessary
number of sections (the number depending upon the degree of
indeterminancy) occurs at a load which differs onlﬁ a liﬁtie

from the load at which the first sectlion falls, the fallure

criterion used here would be adequate. Such load distri- R

butions on a two-hinged circular arch are,
a) uniformly distributed symmetrical loads

b) uniformly distributed antisymmetrical loads

-13-




and c) symmetrical and antisymmetrical concentrated
loads, except a concentrated load at the crown.

This fallure criterlon is inadeguate when a single
concentrated load 1s considered because when the maximum
compresslve straln at the sectlon under the load exceeds e
the other sections of the ar%p have low compréssive stra;ns
and hence the arch has a conslderable reserve gtrength.

The failure criterlon.thus glves a lower bound of
the ultimate load for the above-mentioned distributions.
However, for design ﬁurposes this may be a realistlc 1liniit.
2.2 GEOMETRY OF THE ARCH |

The two-hinged arch under consideration is shown in
Fig.2.3. The geoﬁetry of.the arch is described by the

following:

= Mean radius of the arch

s
o
|

Half the central angle

= Wildth of the cross section

« T o6
[

= Depth of the cross section

Angle subtended at the center by an arc
between the left support and any point on
the arch. S

[ )
]

‘angd

Cross Seckion bxt

Figure 2.3 Geometry of the Arch
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2.3 STATIC RESPONSE
2.3.1 Governing Equations:
a) Equations of Equilibrium: Fig. 2.L shows the
geometry of deformation of an element of the arch and the

forces acting on it.

. . de
a —_
b v sin(5)

Forces and Displacements are Shown in
Positive 3aense

Figure 2.4 Forces Acting on a Deformed
Element
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Considering the equilibrium of the forces in
r and 6 directions and the moment equilibrium, the following

equations are obtained:

2P ¥ sin (d_f‘) — 2@ sin(98) sin (Ad6) 2N sin (d_g_>cas<AAG)

+ dQ 4o cos (‘%—3) cos (ADO) — %‘\% d0 c:os(‘i‘.g) sin(ad®) = 0O

©

(2.6)

‘)e rode + 2N s‘m(‘.".ﬁ.@) sin (Ade) - 2Q slm(if) cos (AdE)

dN
a—é de COSC%Q) cos (AdB) — %—% d© cos (q;%) sn(AdB) =0

C2.7)
daM r cos (98 d N 90
th\ do _Q ° e (_4—') + a_é‘ Y'OS\\'\ (“4—) = 0 (28)
where Py = Radial component of load per unlt
length of the arc
Py = Tangential component of load per
unit length of the arc
dae = Angle subtended at the center by
the element before deformation
Ade = Change 1n d6 due to deformatlon
N = pxial force on the section
M = Bending moment on the section

= Shear force on the section

-16-




b} Strain-displacement Relations: Assuming that
the normals to the middle surface remain normal after the
deformation and that the shear strains are negligible,
expressions for the strain in the mlddle surface, e_  and the
change in curvature ¢ are obtained as follows (Fig. 2.4):

The length and the curvature of the undeformed
element are

ds = Y‘° de ; o_\_@ - __\_ (o)

ds ~ T,

The square of the length of the deformed

element is

2 2
@s+ads) = (% de + (¥ -w)de) + (C‘;_ue) + % de)l (%)

where u = Tangential displacement of the
element, measured positive when the
element moves clockwise

and W = Radilal displacement of the element,

measured positive when thé element
moves toward the center.

Since the compressive straln In the middle

surface 1s

e = _ Ads
° ds
we get,
(-e) (r.de) = (ds+ads) L ©
-17-




From equations (b) and (¢), neglecting the

higher order terms we obtaln,

- _L - du { _‘_ dw-2 dw
e, = v (v E)‘?[l(&?)*“o\—é] (2.9)
o
The linear expression,
2
=L dw ge
Ado = T

is used to obtailn the ohgnge in angle de dué tip defox.'-mation.

' Again, since the nonlinear terms contr"ibute.
insignlficéntly to the quéntity %X, & linear expression is
obtained as follows:

Thé curvature of the deformed element 1is

1 _ (do +ade)
N @sx Aads) . B

Using linear expressions for Ad6 and A4S,

equation (e) becomes -
. v dw
4o + — d@)
( r. de*

ro. rdo + (9% _w)de
T Trae (s )

Or, neglecting the ,quéntitgies of higher order,

-1'8..
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Lo W 1 dw L du
R T T
[ ° r‘o ) © Y‘o
Hence, the change 1n curvature,
da
= | | = ! i du -\o
x = (';‘ - _') T T2 (VV'* e T “‘) (2.10)
. r r de ae

°
¢) Force-strain Relations: Fig. 2.5a shows a

symmetrically reinforced rectangular concrete section of an

arch, acted upon by a positive bending moment M and a positive

thrust N. Depending upon the relative magnitudes of M and

N, the strain distribution across the section will be as

shown 1in either Fig. 2.Sb or Fig. 2.5¢c. It is assumed that

the ratlo of ro/t is large enovgh to neglect the nonlinearity

of the strain distribution across the depth of section. If

the thrust N 1s negative, it 1Is possible that the entlre

gection will be in tension. (Fig. 2.5d)

— b — .

>

o o - -
Cji'

d ,

A

S

J OOSOO

o ——>

CG‘G 7‘ Casc‘ 3

@ (b | © ()

Figure 2.5 Arch Section and Possible
Strain Distributions
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Noting that positlve bending moment causes

a decrease in the initial curvature of the arch, we have

. . ) (e‘ + 6’4)
° 2
’ (2.1)
and ® = (e,-¢e,)
h y
Using the stress-strain properties of concrete

and steel described in § 2.1.1a and 2.1.2a respectively, the

following relations between M, N, 91, 8y O, and e, are obtalned,

Case 1 - Section completely in compression
i.e., que‘uand 2‘20
E P A :
N - s t (‘—.‘_)(e.‘\.e)_‘.—-—l_ C2.\2)
bt 2¢” ntor s Ce-e)
‘ ES P |- T
and :41: - .——-—(\ -L)(e e)+..—' -
£ bt 4%, (e -e )
Ce+e)
- A, (2.1%)
2(e -e)
4
o =20~




where - As = Area of tension steel
1
As = Area of compression steel = Ag
. G
(As + AS)
Py T Tt
n = Modular ratio, E_/E
s’ 7sc
Esc = Secant modulus of concrete
2. 2. 3
e -e e’ _ p5°
A - ( ) g ) _ C 4 e‘ )
\ ’ , 2
e. 3¢
3 3 4 4
3 = 2(e -e) (e -e’)
Omcl \ “"3‘ — _‘, - 4 P ;’"
e
c ec
Case 2 =~ Section partly in compression and partly

in tenston.
i.e., 34< euand e\ <0

E b
N _ =2t Te e -1 A, :
Y E 276 C ")—] T e (1)

C [4 -4 |

|

EER 4 T 5
M- 3t d e -dy-¢ |+,
and ;" \;tl 48" 1 [’5 n ::l (eA-el)

[

AN A (2.15)
2(@4_9‘)1 2
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e
where A = 2 _ €4 2
’
> € 3¢
c c
B 4
and B =2 % _ &
2 a Q_; 4811

The steel strain e, or e, in the equations

3

when either the bottom

(2+12) through (2.15) is replaced by ey

or the top steel ylelds. .

"Cage 3 - Sectlon completely in tension
il.e. e4$0 and e' €0

N ks L (e Le (2.16)
Py (TS ‘
< [
E.b /
and {7}_1= “‘: 9\{ (es-ez) : C2.47)
b 45 :
3 (4

It is evident that in order to satisfy both
(2.16) and (2.17)'simulténeously, the tensile strains -e,
and -e, must be below the tensile vield strain “6,-
d) Boundary'Conditions: The boundary condlitlons

which govern the solution of the two-hlnged arch problem are

At =0 and 6 =2g
, -]
u=w=M=0 (2.18)
—2D-




2.3.2 Nondimensionalization of the Equations:
The governing equations (2.6) through (2.18)

are converted into nondimensional form using the following no-
tation:

\
5 = —% a = 2
o fcbt
U = «w N o= N
s {" bt
C
W oo ow M= My W
r, et
c
P
Pv- = -t e = e
£t
P
- _®_ vl
Pe - {‘//t ’x"— Xr‘b
N J

The nondlmensional equations are:
® Conditions of equilibrium:-

2P _ b rs;n (AdO) Q + cos cAde)'ﬁw
r Y’O — -
+ -—h- c\é Cot. (%—_G) [Cos (AO\G) d—é_ — Sin (Ade) di 1
v db 46

= 0 C2.20)
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ﬂso d® cosec (0.\%9) Pe + %\b [S.\nCAAG)T*I — Co3 (A&G)E{]

b .= .4 ¢dO dN . 4Q
- ?OO\G el (’5:> [Cos (Ade)gg + swn(adB) d—é_)--- ]

=0 (2.2Y)
am g doy = v db .. ,dey\ dn
— — =2 cos ( = + =t 2 s = ) ==
do 1 (3 )] 2t ~ (3 ) de
= 0O (2.22)
Strain-displacement relatlons:
U dW 2 U 4w
e = W - ' -_ - Lf—) - = &= 2.2%
° g do 2 \@gdo T (2-23)
— R \ dU
=W+ 7 = - — == (2.24
X AT £ db )
Force-strain relations:
'\
o _ (el+e4)
z > (2.25)
and %X = i (e -€)
v 4 ]

=2l -




Cas :
_Case 1 If e e and e 30

— o P
N = (-5 r ey + A (2.28)

4?: ; * (e-e)
(e +e)
2(e -¢e) A' C2-27)
q

- A
N = .é_%% e ve (-L 40— (2.28)
lfc [ ( )] (e-¢e)
-}
F"- = Es Pt o_\_’ [ € (|_L)_e +.B_:“:_
/" .t 3 %
44 (e -¢e)
[ ) P-| !
_ Bt8) A | (2.29)
2 (e -e) *
4
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— E;‘k
N = 2 e +e ) (2.30
27 (e, +e, )
<
Er
M = 2 (e -e) (2.3Y)
4¢" v % 2
[
and boundgry conditlons:
At ® =0 and 8 =2
U=W=M=0 (2.32)

2.3.3 PFinite-difference Formulation:
In order to obtgin a numerical solution, the

differential equations (2.20) throuéh(2.2u) aré converted

into dlfference equations. The form of the difference
equations chosen 1is suitable for the numerical method described
in the next article. The difference eguations represent

a discrete system consisting of (m-1) segments denoted as

j-1, j, j+l, etc. The ends of the segments are denoted

as i-1, i, 1+1, etc. (Fig. 2.6). Each of the segments

subtends a nondimensional angle A8 at the center of the arch.

=}

The unknowns M, K, é, e, X , U and W at each section

are denoted by subscripting them, Mi’ Ni’ etc. The loads

PP and Pg on each segment are denoted as Prj? Pej‘ etc.
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Figure 2.8 The Discrete System

From equation (d) of §2.3.1b,

2.
Ado = 1. dw 4o
%" doe”
2 -~
= d W . d®
do™

o &

Using forward differences,

<WL+n.h 2Wi,, ¥ WL) (2.33)

(sa5) - :
J 72'[&@
Using the averages of the values of N
and a at Sections 1 and 1+1 and the forward differences
for the derivatives of ¥, § and M, the differential
equations (2.20), (2.21) and (2.22) are transformed

into the following difference equations,
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AQ BN = CQ, + DN, — 2 P (2.34)
—Bﬁm + AN, = -D& +eN, ¢ 2 (2-35)
and ﬁm: 'M.L*rc C(-Q.L+Q Yte (N -N. Y (2.36)

where  C, = .‘;_ A
C:__-_ C, cot ( ¢A®)
C3 = ¢° INE COS€C<¢°2Aé>
c - ¢OA® # A8
4 " cos ( )
c, = jae . (_—_—)
A = Ccos(ade) —C sin ado) > (2:37)
B = -C sin(ade) ~Ccos (ade)
C = C_cos (AdO) +C sin (AdE)
D = -C sin (Ad8) +C cos (4d06)
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The strain-displacement relations (2,23)
and (2.2l}) are used to obtain difference equations which

relate displacements at sectlons I and i+1.

2
Defining € =e + 3 (§%) + L. dW

245
7 2 ‘-\
e  =¢ e ‘Wit\_wi-u) + Ui.('wia-\ “Wl—-\)
O oy 8(¢°AéJl 19506@
Ciz2,--+ =) ? (238
2
_ W *
eos = e0| v > 2% e € - Wm"'
2(%1&0) )  om om 20 A'é)l
/ dU - -
LSRN EEEACURLIIS @3
L
v d'u
_ - / -
Ul (59 8w - 87 .
L
-/ hug
(e . )
ol = o L4y o L-)
{ G , (b= ..,m-l) (238
s’ _ ceo‘n."' éo.) e ’ Cecm— E° M-D .
o1 AE om —.__,_Xg-w
” 2W 2
W = [d po -‘ = . - & 2.
L do6* _ Z (% - &) - @38)
A\so) us\'nj Taylor Series
/ ’ /" -
W, =W, + W,  (48) + --- (2.389)
U = ! Q “ (Aé>1
Ly UL + U.L (AB) + U.‘. —— e (2.39)
/ - -2
and W'LH =wi T w'\_ (AQ) + W: ﬁ%ﬁ—? + - (2-40)
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The finite-difference approach used above
was chosen as the most sultable to obtain & good numerical
solution after making a preliminary study of various possible
approaches,
2.3.4 Numerical Method of Solution:

A two-hinged clrcular arch has a degree of !
static indeterminancy equal to one, The structure is !
analysed by treating the reaction at the right hand support
as the redundant (Fig, 2.7). The magnitude of the !
redundant 1s determined by first assuming a certain §
value and then refining it by successive 1lterations
until all the governing equations are adequately sat-

isfied,

Pigure 2.7 Arch with External Reactions

The method can be descrlbed as follows:
Trial 1 -
(a) * The arch is divided in (m-1) segments
and the nondimenslonalized radial and tangentlal components

of the load, distributed on each segment, are obtained.
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{b) An inttial nondimensional value Ha is

1
assumed for the horizontal reaction at the right support.
A good initial value can be obtained from the linear
elastic ahalysis of the arch.

{(¢) Using equations of static equilibrium for the
entire structure, the nondimensionalized values of the

other three raactions, viz. Hg, Y;, and are obtained.

"VT
B
(d) Equations (2.37) are now evaluated assuming

(Ad(—))j = 0, Maklng use of \Q » By

s eees equations (2.34), (2,35) and (2.36) are

» MAand the constants

>
solved for (m-2) segments, Thus the forces N and §Q and
the moments M are known at all the m sections.

(e) At all the m sections, the values of concrete
strains at the top and the bottom of the section are
caleculated assumlng that the concrete stress-strain curve
i1s linear in compression and that the tensile stresses in
concrete are negligible, The conslderations used for this
purpose are given in Appendix TI.

(f) Using the strains obtained above, each of the
m sections 1s classified as either €ase 1 (Fig. 2.5b),

Case 2 (Fig. 2.5¢) or ¢ase 3 (Fig. 2.5d). Governing
equations (2,.26) and (2.27), (2.28) and (2.29) or (2.30)

and (2,31) are chosen for each section in accordance with
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the above classification. The first twe pairs of the
equations can be solved by the Newton-Raphson iteration!
method(lz). (If M is negative the terms e, and e  are
Interchanged and the same equations are employed along
with the absolute value of M,) This method as applied to
the present problem is explained in Appendix II. The
strain values obtained in step (e) are used as initial values
to start the iterations., The last pair of equatlons being
linear, the strains obtained in step (e) satisfy these
equations, Thus the solutlon of the proper palr of
equations gives stralns e, and e, for all the m sections,

(g) Using the concrete strains e, and e the

1
steel strains e, and e,are obtained. If |e,} or 18,1

or both are greater than |ey| , the governing force-strain
relations are altered as explalined in 2.3.1c and the
nonlinear equations are once again solved by the !'Newton-

Raphson iteration! method, The initial values for starting

the iterations are the solutions obtalned in step (f).

The values of e, and e, thus obtained take into account the
yielding of steel.
(h) The quantities e_ and X are obtained using
equations (2.25) for all the m sections,
(1) Using equations (2.38a) through (2.3Bf),
L%f, Lﬁ’, v%”(i =1,...,m) and \N{ (1t = 2,...,m) are
/

evaluated in terms of one unknown viz, V{. Since, in the

first trial, values of Uf 4 and wi's are not known,

-32-
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30175 in equation (2.38a) are assumed to be equal to Eoi's.
This amounts to neglecting the n. linear terms in the strain-
dlsplacement relatlions for this cycle of trial 1. Equations
(2.39) and (2.4;0) are now written for (m-1) sections %o
obtain a set of (2m-2) equations involving (2m+l) unknowns
viz. m Uy's, wi's and w;. From equation (2.32)
We know that U1 = Wl = Um = 0. Thus the unknowns are reduced
to (2m-2). On solving these equations simultaneously the !
values of deflections U and W are obtained for all the
m sections.

(3) Making use of equations (2.33) and (2.38a)
( &AdO )J’ (3 = 1,¢es, m=2) and Soi (1t =1,.0., m) are calcu-
lated and steps (d) through (i) are repeated using the
newly calcualted values of ( Ad@);r and Soi. The deflec-
tions U's and W's thus calculated include large deflection
effects. These deflectlions are found to be satisfactory and
a second repetition of this step 13 not needed.

Trial 2 -

(a) If the value of Wy obtained in Trial 1 - (§),

does not satisfy the condition W, =~ O (equation 2.32)*,

*In the present method a tolerance of ( - 1/500 inch <<wm'<
1/500 inch) is considered to be satisfactory.
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the assumed value Heiis changed by a small percentage

to a new value Haz'
(b) Steps (c) through (3) of Trial 1 are now

repeated, the only difference being that the values of
(Ad@)j in step (d) [equation (2.33)} and those of ey
in step (1) f[equation (2.38a)] are obtained by using the

values of \Ji's and W,'s calculated in step (j) of trial 1.

i
(¢) If the most recent value of W,_ 90, the

value of W _  1s modifled once again. The new value HBB

is obtained by extrapolating lineerly on the basis Of'\Aaa’
W,, and the deflections W 's assoclated with each
respectively.
Using HB%’ steps (z) through (j) of

Trial 1 are repeated and the deflection V¢m is checked.
This procedure is contlnued untll the deflection
falls within the tolerance limits,
. 2.3.5 Calculation of Ultimate Load:

The ultimate load carrying capacity of an arch
for a particular distribution of loading can be obtalned
by using the method described in the previous article, The

procedure conslsts of analysing the arch for increasing

velues of load until the ultimate 1s obtalned, The ultimate

load 1s assumed as that which causes the maximum compressive
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straln in the arch to exceed ey the ultimate concrete
strain, (§2.1.3).
2.3.6 Digital Computer Program:

A computer program prepared to handle the extensive
caléulations involved in obtalning a numerical solution by
the above method 1s presented in Appendix III. The program
consists of a main routine and six subroutines, The flow-
chart of the program is also presented in Appendix III.

2.3.7 Convergence:

a) Number of Discrete Segments:

Semicircular arches were divided into 16, 20,
2l and 28 segments and analysed for various load distri-
butions, It was found that the results obtained from the
last three cases were essentlally similar and a choice of
20 segments (each subtending an angle of 9° at the center
of the arch) was made to approximate a semicircular arch,

b) Convergence of Iterations:

In the numerical method described h1§2,3gu,
two different iterative procedures are used., The Tirst one
concerns the solutions by means of 'Newton-Raphson iteration!
[steps (f) and (g) of Trial 1]. Certain difficulties ex-
perienced in obtaining convergence with this iteration have
been explained in Appendix II ( § 42.3).

The second iteration involves successive choice

of the horizontal reaction until sufficlent convergence 1is

-35-




obtained in as few as four to six cycles of iteration.
However, for certain load distributions, as the locad
.approaches the ultimate small changes in the assumed value
of the redundant cause large changes in displacement and
1t becomes difficult to obtain the convergence., Consider,
for example, a semiclrcular arch under the action of a

uniformly distributed antisymmetrical loading (Fig, 2.8a),

J Ultimate load

: T X
K L Load/ inch /{\

A 8 >

-

Maximum deflection

(o) ®

Figure 2.8 Semicircular Arch under a Uniform
Antisymmetrical Load

For points below Y on the load-deflection
curve in Fig, 2.8b the convergence is satisfactory., When
the load 1is lncreased to that at point X, the combination

of moment M and thrust N for a certain trial value of the
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horizontal reaction say HaU causes the maximum compressive
strain at sections K and L (gquarter points) to exceed eé.
That 1s, the strains 1n many fibres at these sectlons
correspond to the drooping part of the concrete stress-
strain curve, With such large strains, the change in
curvature at the sections K anhd L is large and its con-
tribution to the end deflection Wm is large. As the value
of the horizontal reaction is chenged, the moments and the
thrusts on the sections change, These changes, though
small, may be sufficient to cause a change in the strailn
distribution at either X or L or both, such that the
maximum compressive strain 1s less that eé. Such a drastic
change in strains canh occur because the concrete stress-
strain curve has been assumed to be parabolic with a
drooping part, the slope of which increases very repidly.
The net effect of thils large change in the strains at

Kor L 1s to affect the curvature at these points con-
siderably and consequently to change the end deflectl on
W by a large amount, On account of such a sensitivity of
the deflection Wm to the changes in the value of the
redundant, the solution tends to oscillate or even

diverge., However, it 1s seen from Fig, 2.8b that such
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a difficulty in convergence occurs only in the vicinity of
X, where the load-deflection curve is almost horizontal,
Therefore, 1t 1s reasonable to take the load at X as
the ultimate load of the arch, and a good convergence
is not necessary., The method thus yields a close
approximation of the value of the ultimate load, but
is unable to predict the load-deflection curve beyond X.
2.4 DYNAMIC RESPONSE

2.4.1 Governing Equations:

The forces actimg on an element of the arch
deformed under the action of time-dependant loads are
shown in Fig. 2,9. 1In addition to the external loads
and the internal forces, radial and tangential inertis
forces are shown to act on the element. The rotational
inertia has been neglected, The geometry of deforma-
tion of the arch element 1is simllar to that in the
static case (Fig. 2.4). Also, the force-strain
relation now depend on the dynamic stress-strain
propertles of both concrete and steel,

a) Equations of Equilibrium: By con-
sldering the equilibrium of forces in r and 6 directions
and the moment equilibrium, the following equations of

dynamlc equilibrium of the arch element are obtained:
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Figure 2.9 Dynamic Forces Acting
on a
Deformed Element

ZFrY;sin(d_ZQ) - 2Q5'm(<iz?) sin (AdB) - 2N s\n(dg_?) tos (AdB)

) e .
+ %—Q- a8 cos (d-a.') cos (Ao\e) -?_%‘ de Cos(d_f)sm CAC\G)

o

— pPbir de 'f:v = O (2.4V)

F-erode + 2N sin Cég)s;ﬂ (AdO) ~ 2Q sKn(C_*_Q_'_e) cos(AdB)

~ 2N 4o cos (42) cos (Ade) — W ooy (42y5in (ade)
30 26
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23
~Pblr do Y _ g (2.42)
o )tl

and M _ Qr s d® N @ .. /dO\ _ 0o (2.43
30 o°5(4)*5;)%d;5‘“(2")‘ )

where, in addition to the notations used in § 2.3.1, the
density of reinforced concrete is denoted by 2 and the time
by ¢t.

b) Strain-displacement Relatilons: Since
the geometry of the deformed element is similar to the
one in the static case, the strain-displacement relations
are similar to equations (2.9) and (2.10) except that the

tctal derivatives are replaced by partial derivatives:

{ 3u \ dw. 2
€ = — (Ww-=—=>) -1 |1 ow ow
o T 307 ¥t [2( O)+u%] (2-44)
2
and o = L (wy 2 _ 2%y (2.45)
rz 20+ 20

Also equation (d) of §2.3.1b becomes

l

2
Ad® = —, ’L‘W;_ de (2.4¢)
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¢) TForce~strain Relations: The force-
strain relations also are similar to those in the static
case except that the dynamic properties of both concrete
and steel are to be used, That is, in equations (2.11)
through (2,17) fg and eé are to be replaced by fgc and
eéc respectively., The dynamic force-strain relat ions are
given in a nondimensional form in § 2.4.2.

d) Boundary Conditions: The boundary

conditions governing the dynamic case are the same as in

the static case, viz,

At

@
1
o
o)
e
[o R
©
il
o
®

u=w=M=0 (2.47a)

e) Initial conditions: The initial
conditions specify that the arch be undeformed at the
start of the response, 1.e, at time t = O,
u=w=M=N=Q = 0 everywhere on the arch (2.47b)

2.1,2 DNondimensionalization of the Equations:

For the purpose of converting the governing
equations into nondimensional form, the following notation
1s used in addition to that defined in §2.3.2 [equaticns
(2.19)],

f = 2 and 1t = t (2.48)
de f” T
41~




where T = Natural period of the arch,

Hence, the nondimensional governing equations are,

Ecluqh'ons of eclui\l'brc'um -

2P - 2b [s'm(Ao\e)a + cos (Ac\G)_l\-l:J
r v

[

b .5 40 2R : -
-+ - 406 Cot‘(.”{)[COSCAde):;E - sin (Ado) %;_ :l

:Fb_’;_.¢d5 ’31

—a AN
1

T f: sin C‘i,?_) Yhe

g

(2.49)
¢o d® cosec (dig) P@ + Q—;‘_"l [SM (AdOYN — cos CAd@)E}J

N _
- dB cot (0‘?9) {:cos ade) 2N 4 sin(Aade) 28 :(

28
- v, $ do >
= Pb = el 2 -Ua. (2.50)
T £ sm(‘-ﬁ?) pYS
[ 2
_ - _
W L cos (493 + v &, de sin(d2y 28
30 t 2t 0
= O (2-S\)
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Stralin-displacement relations:

e = - _L E_L_). ~ dW 1-2 M (2-5‘2)
o T W g 28 1(422,36) g 2%
%oow el EW oL (2.53)
= ‘ -, - 2.53
¢z 3?1 %, 28
2.
and ANdoe = 2W d(:). (2-64)
2

Force~strain relations:
As stated earlier, the force-strain relatlions are

obtained by the substitution of fgc and e! in place of

de
fg and eé respectively in equations {2.11) through (2.17).

The form of equation (2,11) is altered to suit the numerical
method described in 2.4.4, Thus, the force-strain relations

are,

a4 e o ‘ C2.550)
t %
and e‘ = eo + Ir
©
-3~




Also € =e +(e ~ed(t-d)/¢t
2 \ 4 {

(2.85%)
and 63 =€ + (e -€) d/t
Case { : If €4< e ancl e)>/o_
E.b
! s Tt -y A -
N = ——— ‘..._\_. e ] _____i_ (256)
24" ( n)( Lt 93)+ ?d‘ Ce-2)
< 4
— E b Y - R
M= 2t d i dyce e+ ¢ 3
4{// t, ( n) ( 23 2‘) dc (e~e)1
[ 4
- (€+e)
— T .
de 2(e4 “e')a- A3 (2‘57)
a2 3 3
where A = (%8 - (eg €D
3 e’ 2
dé 3ed¢
3 q . 4 -
ond B - 2(€4~e|) . Cea -€, )
3 3Q’ Ae;ﬁ-
de de
-4]4-




Case 2 : 1If
R - ok

= 2#:

E b

M o=
44¢"

¥

-ch

where AA
and %4

Case 3 : 1If

N o= h
2{1

mo- i
4‘€II

5

4 (2.58)

(2.59)

(2.60)

(2-61)




In ¢ases 1 and 2, the steel strain e, or
e, 1s replaced by edg when elther the bottom or the
top steel yields. However, in Case 3, both the tensile
strains -e, and -e, need to be below thé tensile
yield strain -edg in order to satisfy equations (2,60)
and (2.61) simultaneously,

The boundary conditions in nondimensional

form are,
At ®=0 and ©=2
U=w=M=0 (2.62a)
The initial conditions are,

at £=0, U=w=M=KN=3g§= 0 everywhere on the arch
(2.62b)
2,4.3 Finite-difference Formuwlation:
In order to solve the governing equatlons
using numerical techniques, the differential equations

(2.49) through (2.54) are converted into difference
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equations, suitable for the method presented in 2.4.l.
The formulation of the difference equations is accomplished
by using a discrete system shown in Fig. 2.6. The notation
followed in §2.3.3 denoting the discrete sections by
i-1, 1, i+l etc., and the discrete segments by j-1, j,
J+1 etc., is also used in the present case., 1In additilon,
sUuccessive time intervals are denoted by k-1, k, k+l etc,
Therefore, éach unknown carries two subscripts -
either subscript 1 or J depending upon whether the
unknown pertalns to a section or to a segment and the
;ubscript k specifying the time interval.

The difference equations obtalned are as
follows:

Using forward differences, equation (2.54)

becomes,

(Wi = 2W v W)

(adey, . Uk ik ik

(2.63)
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By using central differences for sections
away from the boundaries and forward differences for

boundary sections, equations (2.52) and (2.53) become,

€ .. =W - (Ui“)k ~ Ui
2¢0A5

C(Wa W

T,k 1-.,\.«) _ Ui,k(w‘ . (“:"*)

} (2.64)

Je

[RASL
8(;{)[;6)" 28 a8
(L=2,-+ m-1)
: 2
eo i,k = - [-)-LLE—__ — wz;&
£as a0 s
2
e - UM'IJK Wm-—l K
o mKk — % —_—
’ £ AT 2 (@ AB)
—7—(. = € . (wi+\;k—2wi,K+wi—| ,k)
tyk oK + Y
(g 26)
=}
(Wi ~ W, )2- U. (W
-+ Pl l—‘,k 'L)K( ’:‘H,k—wi“\,k)
8(¢° Aé)l (2¢ ADB)
o
. (L:Q—)---,m-n)
&:‘ W S V_.\/L_E
’ T 28 a8)
2
e W,
X = € - m-i %
m,k owm k& 2(¢OA§)
48~

> (2.65)




Using the notation defined by equation (2.37),
equations (2.49), (2,50) and (2,51) are converted into
difference equations., The quantities N and § are sub-
stltuted by their average values at sections 1 and 1+1,
while forward differences are used in place of the derivatives

of N, Q and M. The difference equations are,

/Y — —
C (WT). CQ. -AQ. = —ON, ¥BN x2P
¢ J,k* Ql/k Qii—l’k Lk ALY Tk
(2.66)
» — _— — —
C (UT), 4DQA, —BQ. =CN —-AN  +C P
(< J)k Lk tr) R i,k L¥k 3 OJJK
(2.€7)

4 B 4 4y Lk iﬂ)k S qu._hh+5k
(2.68)
where C = PfPb X .‘_ta__A____
6 2 v
T ‘?c S\n (%.9)
2
W1 = 2W
at?
2
UT/ = a_‘i
Dt
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2.4.4 Numerical Method of Solution:

The solution is started out from the specified
initial conditions and then information i1s obtained at
successive time intervals, At apart. The method 1s as
follows:

{(a) The arch is divided in (m-1) segments as
shown in Fig, 2+6. The ordinates of the radial and tangential
compohents of the load pulse acting on each segment are computed
at time intervals At apart so that the values of loads at

discrete times t_, t,, ..., tk are known as shown in

1

Fig. 2.10a or 2.11b, These load values are nondimension-

alized, The natural period, T 1s calculated as follows(13),

Compression mode

I‘O
1800
where T 1s 1n seconds

and r is in feet,

Flexural mode

z 4 2
T = g NS ARES
425000 dVp L (A/pyY -4

where T 1s in seconds

and r, and 4 are in inches,

-50-




-

Lime b ° .

@
ty. = Rise +ime of 4he load.

Ctg—tr‘)= Time dor  which  1oad is conslant
Ctd—tg)=Decq_\, Yime. of dhe load.

Figure 2.10 Load-Time Curves

(b) Starting with the undeformed arch

equation (2.62b) at time t_, the solution for the

response 1s launched by using the 'Acceleration-pulset

method(ll) In this method the following formulae are

used for extrapolating the displacements wi Kk and
2

Ui,k of a secion 1i(1 = 2,3,...,m-1) at time ty ,

(k = 2,3,...).

" -2
-W. 4+ W) (Y (2-69)
-2 L,k—l {, ke

W, =2 W,
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and U, =2U. ~U. 4 ot
\ [3

-2
(at) (2-€9)
Lk l’k-l l)k- \ '

where &A% = A%E—, the nondimensional time interval,

At time t,, for any section i (i = 2,3,,

..’
m-1) the following two types of extrapolation formulae

are used,

(1) If the load-time curve is as
shown in Fig, 2.10a,

1

W. = —;j CWTY  cal)’
51 v,0

> (2-Y0a)

" <.\
ard U, = CUTH. o (at)

) ’

(SIS

J

(2) If the load-time curve is as
shown in Fig, 2.J0b,

W. =4+ (WT)., al)
Ll 6 Lt

(2.70b)
i " P

and U. =4+ @WTv)y., ccAt)
6 L1

L4

) ’
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In cases when equations (2.70b) are used, an
iteration on the values of both (WT")1 , and (UT")i 1
» 2

becomes necessary.

(c) At time t_, equation (2.62b)

indicates that

U, :W, :M-. ‘:N. :5 =0

t.o Lo t,0 t,0o L0

Using load P and equilibrium equations (2,66),

rj,o’ T jo

(2.67) and (2.68), the values of (WT") and ¢UT"), |

J,o 3
(j =1,..., m-1 - segments) are obtained, Also,
approximating the radial and tangential accelerations of

section 1 by the average of the corresponding acceler- .

ations of segments j-1 and j,

(WT)., =1L FcWT’B. +(WTY,
Lk 2 | -,k J,k
ca.mm)

il

and (UT”)i k ":\3.'

where (1 = 2,3,..., m-1),

the values of (WT")i , and (U'I‘")110 are obtained.
2
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(d) At time &, = t +At,
(1) Using either equations (2,70a) or

(2.70b)" as need be, values of Wi_’1 and Ui,l )

(1 = 2,..., m=-1) are obtained. The boundary conditions

[eqUation (2.62&{] require that,

wl,l = Ul,l = Ml,l = W =T = M =0

(ii) Using equations (2.63), (2,6L4) and
2.65), values of ®01,1 and %41 (i =1,...,m) and
( A;d@)j 1 (j =1,..., m=1) are obtained,
L4
(1i1) For each section i, equations (2.55a)
and (2.55b) are employed to obtain concrete strains e,

e, and steel stralns e,, e;.

*When equations (2.70b) are used, the values of (WT")i 1
b
and (U'I‘")i 1
3
certain reasonable values are assumed; at first operations

(1 =1,...,m) are not available. Hence,

(1) through (vii) are performed and values obtalned in
step(vii) are compared with the assumed values, If the
agreement between them is not satisfactory, the newly
obtained values of (WT")i’1 and (U‘l‘")i’1 are employed in
step (1) and steps (i) through. (vii) are repeated., This
process is continued until a satisfactory agreement between
the values used in step (1) and those obtalned in step
(vii) is =chieved.
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(iv) Based on the values of e, and e,,
each section is classified as Case 1 [equations (2.56),

(2.57)1, Case 2 [equations (2.58), (2.59) ] or Case 3
[equations (2,60), (2.61)). Also, strains e, and e,

for each section 1, are compared with the yield strain of

steel e, and are repiaced by ®ay (with proper sign)

dy
if found to be greater than edy in magnitude.

(v) Making use of the equations (2.56),
(2.57) or (2.58),(2.59) or (2,60), (2.61) values of
ﬁi,l and Mi,l (i =1,...,m) are obtained,

(vi) Loads P and (Ac\e)i N
vt

rj,1* Fei,1
calculated in step (1i), (j =1,...,m-1) and equations
(2.66), (2.67), (2.68) are used to calculate (WT")j 15
b
(UT")j,l (j =1,...,m=1) and Qi,l (1 =1,...,m). For
the (m~-1) segments, (3m+3) equations are now availlable
while the unknowhs form a total of (3m-2), i.e,, (=) Qs,
(m=1) WI"s and (m~1) UT"s, In order to overcome this
difficulty, it 1s assumed that

(WT") ., =0 where j =1 and m-l
Js1

This assumption implies that the radial accelerations of

segments nearest to the two supports are. neglected., This
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leaves (3m-l;) quantities as unknown, Excluding equation (2,66)
as applied to segment (m-1), a total of (3m-l) equations are

available. Solving these equations, values of (WI")
(UT")

3,1’

3,1 (3 " 2,...,m-2) and Qi,l (1 =1,...,m) are obtained.
However, 1ln the case of uniformly distributed symme-

trical loading, making use of the fact that the shear § at

the crown is zero, equations (2.,66), (2.67) and (2.68) are

simultaneously solved for half the arch, The solutions of

of these equations yield the values of (WT"), (UT") and @

for one-half of the arch: the corresponding values for the
other half are obtained by using symmetry.

(vii) PFinally, using equations (2,71) for k = 1,

values of (WI"); , and (UT")i 1 (1 =2,...,m1-sections) are
?

51
obtained,

At the end of step (vii) all the information regarding
the internal forces M, N and @, the radial and tangential dis-
placements W and U, and the corresponding accelerations WT"
and UT" is available at time t for all the m sections,

(e) At each successive ti;e tz, ta,... ty the seven
steps of (d) are used to obtain all the information about the
arch at the discrete sections, the only difference belng that
in step (1) equations (2.69) are used to calculate displace-
ments wi,k and Ui,k (t =2,..., m1 - sections),.

The steps (a) through (e) thus give the response
of the arch to a time-dependent load,

2.4.5 Calculation of Ultimate Load:
The ultimate load of an arch 1s once again
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leaves (3m-ly) quantities as unknown, Excluding equation (2.66)
as applied to segment (m=-1l), a total of (3m-l) equations are
available. Solving these equatlons, values of (WT")j,l’
(UT")j,l (3 "2,...,m2) and Qi,l (1 =1,...,m) are obtained.
However, in the case of uniformly distributed symme-
trical loading, making use of the fact that the shear § at
the crown 1s zero, equations (2.66), (2,67) and (2,68) are
simultaneously solved for half the arch, The solutions of

of these equations yield the values of (WT"), (UT") and Q

for one-half of the arch: the corresponding values for the
other half are obtalned by using symmetry.

(vii) Finally, using equations (2,71) for k = 1,
values of (WT")i,l and (UT")i,l (1 =2,...,m1-sections) are
obtained.

At the end of step (vii) all the information regarding
the internal forces M, N and Q, the radial and tangential dis-
placements W and U, and the corresponding accelerations WT"
and UT" 1is available at time t for all the m sections,

(e) At each successive tile tz, tz,... ty the seven
steps of (d) are used to obtsin all the information about the
arch at the discrete sectlons, the only difference being that
in step (i) equations (2.69) are used to calculate displace-
ments Wi,k and Ui,k (L =2,,.., m1 - sections).

The steps (a) through (e) thus give the response
of the arch to a time-dependent load,

2.4.5 ¢Calculation of Ultimate Load:
The ultimate load of an arch 1s once again

=56-




defined to be that load under which the maximum compressive
strain in concrete exceeds the ultimate strain e,. There-
fore, as explained in §2.3.5, this method gives ultimate
loads for certain distributions of loading such as
(a) uniformly distributed symmetrical loads, (b) uniformly
distributed antisymmetrical loads, and (c) symmetrical and
antisymmetrical concentrated loads, except a concentrated
load at the crown.

For a given distribution of loading and for a
given load pulse such as the one shown in Fig. 2,10b
the uUltimate load 1s obtained

(defining tr’ t, and t

hi d)
as follows:

(1) Starting at a low value of the peak load
%’ the arch 1s analysed at discrete times t_, tl,...,tk

uaing the procedure outlined in §2.4.44., At each time the

maximum value of the concrete compressive strain is compared
with the concrete ultimate strain to check for failure,

The analysis is continued either until t, = t, (if t;> T)
or until ¢, =T (if t4 < T). Since the maximum response

of the arch occurs at a time t < T (usually tmzkgO.ST to
0.75m) (11)
gufficient for investigation of the possibility of failure

, the analysis of the arch upto tk'2,T is

under the load % .
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(2) The peak load Ii 1s increased by
a certaln percentage and the analysis as explained in
step (1) is repeated.

(3) This process of increasing the
peak load %’ end analysing the arch 1s continued until
the ultimate strain €y 1s exceeded. The value of ;a
at which this excesslive strain 1is produced 1s the ultimate
load of the arch for a given distribution of loading and
a glven load-time dependence.

2.l4.6 Digital Computer Program:

A digital computer program prepared to perform
the calculations involved in the methods outliﬁgé in
articles 2.4.4 and 2.4.5 1s presented in Appendix IV.

A flow-chart of the progrem ls also presented in
Appendix IV.
2.4.7 BSelection of Space and Time Intervals:

Before the numerical method presented in

2.l can be used, 1t 1s necessary to determine the
approximate values for the parameters Ae and At used
for discretization of the continuous system. As in §2.3.7.
agaln a semlcircular arch 1s divided into 20 segments so

that A© 1s equal to nine degrees.
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In order to establish the time interval A%,
information regarding the problem of wave propogation in
a one dimensional elastic system proves to be useful.
Crandall(lu)has shown that in a one dimensional elastic
system, the time interval At 1s related to the ratio of
the space interval AX and the seismic veloclty, CS in
the medium. This relation says that for the stability

of the numerical method of solutlon,

At é c C2'72->

S

Crandall has also suggested that 1f At Is much smaller
than é&ﬁ » the accuracy of the numerical method

]
deteriorates.

With AX = v AO
> (2-73)
E
Q\'\J Q = =<
s r
J

Semicircular arches of Type A (refer to § 3.3) under
different distributions of loading with different load-

time functions have been analysed. It 1is found (Fig. 2.11)
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that for At = LX or L ..AC_?_( ,» the convergence is
s

C

adequate and sati:factory deflectlon-time curves are
obtalned. However, for At >éc->-(the deflection-time

curves show erroneous trends. sTherefore, for all the
dynamlc cases the crilterion £¢==%?is used, permitting

the use of the largest time interzal without causing numer-
1cal instabllity.

2.5 CONVENTIONAL THEORY FOR PREDICTING ULTIMATE LOADS
AND DEFLECTIONS

In this section a brlef review is given of the con-
ventional methods of predicting the ultimate loads of
arches under{1l) uniformly distributed symmetric radial
load, (2) concentrated load at the crown and (3) anti-
symmetric loads at the quarter points. The expressions
for deflection at the points where the deflections are
measured in tests (refer section 3.4.2 (¢) in following
chapter), are also given. The initial tangent modulus of
concrete 1s to be used In these expresslons. The expressions
for deflections are derived by assuming linearly elastic
material, using the usual virtual work approach.

2.5.1 Uniformly Distributed Symmetric Radial Load:

(a) Ultimate Load: If the secondary bending

effects are neglected, the ultimate load 1s glven by the
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following expression.

P = (o.85f +bp § ) bt (2.74)
u C % J r
T °
where t = Total depth of arch in inches
To = Radius of arch in inches
b = Width of arch in inches
1 = Ultimate load in 1bs/inch
TH As + As'
P = Total steel percentage = ———r
k bt

(b) Deflection: The radial deflections of the arch
at crown and at points 5L4° from the supports are given by

the following expressions.

2
P p
w = \.636 _TH o (2-175)
C
AEk
P et
w‘l - .20 T™ © CQ-ZG)
A‘Ec
where A = A, [1+ (n-1) p.]
E, = (1800000 + 390 fcr) in  pst.
Prg = Distributed load in 1bs/inch
Ac = Area of concrete sectlion iIn sq. inches
n = Modular ratio = gg = 10 (assumed)
E
c .
W, =-Radial deflectlon at the crown in inches
wq = Radial deflection at 54° points
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2.5.2 Concentrated Load at Crown:
(a) Ultimate Toad: The ultimate load of the
arch under concentrated load can be calculated by using the
conventlonal plastic theory as the test specimens of the
test program are underreinforced. It can be shown that
the arch will collapse with the formation of three hinges,
one at the crown and two others at 38° from the supports.
It 1s not easy to derive an explicit formula for the
ultimate load because the effect of thrust on the moment
capaclty of the sectlion has to be consldered. An iterative
procedure described below can be used.
In the first cycle, the ultimate load can
be calculated by using equilibrium conditions and neglecting
the effecf of thrust. Two unknowns - horizontal reaction H
and ultimate load Pu can be found by using the conditlons
that the moments at two hinges should be the ultlimate moment

Mu’ which 1s given by

M, = Asfd (d - a/2) (2.77)
whzre a = _A.‘_S_L
(0-85?;17)

Once this ultimate load is calculated, it can be used to
caleulate the thrust at the crown and at the 38° points.

With these values of thrusts, new values of moment capacities
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at crown and at 38° points can be found from the graph
of P/Pu VS, M/Mu- (See for example Fig. 5A - 10.2,
Reference No. 13, in bibliography.) With these values of
moment capacltles a second cycle of iteration willl glve
a new value of H and Pu' This process can be repeated until
a satisfactory convergence 1s obtained. Usually two or
three cycles should glve satisfactory results.

(b) Deflection: The expression for the

radial deflection at crown is as follows.

T
W = o002} _"° (2-78)
EC. IAV
where IAV = Average of the moments of inertia of
the cracked and uncracked sections in in.u
E, = (1800000 + 390 f') 1in psi
c
PTH = Concentrated load at crown in pounds.
W, = Radial deflection at crown In inches.

It 1s uncertain as to what wvalue of the
moment of inertia of reinforced concrete section should be
used. However, as recommended In references 11 (Section 2.6)
and 19 in bibliography, it 1s decided to use an average
of the moments of Ilnertia of the cracked and uncracked

).

gections (1.e., IAv
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2.5.3 Antisymmetric Concentrated Loads at Quarter
Points:

(a) Ultimate Load: The ultimate load in this
case can be calculated also by using plastic theory. Under
this type of loading 1t can be shown that the arch collapses
by the formatlon of two hinges, one at each quarter point.
To take into account the effect of thrust on the moment
capaclty of the section, the following iterative procedure
can be used.

In the first cycle of iteration, if
the effect of thrust 1s neglected, the ultimate load Pu

is glven by

P“ = & (2-Y9)

where M = A £ (d-a/2)
u sy
A_{
qnd aA = _5_‘1.7
0.85& b

With this value of ultimate load, thrust
at two quarter points can be calculated. These thrust

values can be used to determine the new xalues of moment
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deflection 1s calculated by using formulae presented

in § 2.5 and the analytically predicted ultimate load.
The experimental value of M 1s calculated by using the
value of the maximum deflectlon under the ultimate load
measured as described in § 3.4.2 (c) and the elastic
deflection obtained by using again the formulae given in

§,2‘5 and the experimentally determined ultimate load.

2.7 COMPARISON OF DYNAMIC ULTIMATE LOADS - NONLINEAR
THEORY AND APPROXIMATE THEORETICAL ANALYSIS
The nonlinear theory developed so far 1s used to
obtain ultimate loads of arches under a triangular
dynamic load pulse with zero rise time (Fig., 2.12),

The distributions of loading along the arch are
a) GCompression mode type
and b) Deflection mode type

The geometry and material propertles of the arches

is as follows:

b = 10", t = 15" ro, = 300"

£o = 90°, pg=0,025 a4 =13,5"
£t = J000 psi, fdy = ;0,000 psi,
de 3

E, = 30 x 106 psi
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Figure 2,12 Triangular Load Pulse

Various values of the ultimate loads, pym are obtained
for different duration of loading t,, with both types

of distributions.
Approximate analysis based on a slingle-degree

freedom system 1s also conducted for the same arches.

The following formulae(l3)’ (19) are used for this
purpose:
Compression mode loading -
roq -1
2 p T 0
Pm = T¢ — + —— (2 p-1) -5
1 + 2r Rty
At
where p, = Dynamic load (1lbs/in)
- 1
I’c = (0085 de + pt fdy) _b_t (le/in)
To
T = Natural period of the arch 1ln compression
mode (milliseconds)
- o
21.6
r = Mean radius of the arch (inches)
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B = Ductllity factor

Here, p, 1ls cdlculated for two values of pm, viz,

m
B =1.3 and 2, and various values of b,

Deflection mode loading

) L . -
2 0.5
o = m L+ ——(2-p1)
m 2
f 1+ = T At
X tl
2
where r = 7.2 p fdy
b i oro)ﬁ
Ag
p = ——
bd
T = Natural period of the arch in flexural
mode (milliseconds)
_ ( §o- ro)2 ) (n/ ¢o)2 + 1.5
= 2 ‘
hes a \fp ( %/ @o )= 1

Here various values of t; and two values of a,

vix. m = 2 and 5 are used for calculating pp.

The analytical results obtained from the nonlinear

theory are compared wlth results obtalned from the approx-

imate analysis (20), This comparison is shown in Fig, 2.13.
There is a good agresment between these results when the

duration of loading tl is greater than about half the
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natural period, T. However, the approximate analysis
seems to give unconservative results for t; less than
about 0,5 T, A possible explanation for such results
may lie in the fact that under loads of short duration,
more than one mode of vibration are excited and analysis

based on a single-degree freedom system becomes inadequate.
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CHAPTER 3

EXPERIMENTAL INVESTIGATION

3.1 TEST SPECIMENS

All test specimens are reinforced concrete, semi-
circular arches of radius 18" and of rectangular cross-
gsection. For the purpose of these tests, two sizes, one
with a cross-section of 2" x 2" and the other with a
cross-section of 1" x 2" were chosen. The purpose of
choosing two sizes was to detect if possible,the in-
fluence of the natural perlod on the dynamic response gf
the arch for a given rise time of the dynamlc load. The

detalls of the geometry, cross-section and reinforcement

of the arches are shown In Table 3.1 and Figs. 3.1 and 3.2.
The speclmens with 2" x 2" cross-section are designated
as Type A, and those with 1" x 2", as Type B.
TABLE 3.1
Specimen Cross- Reinforcement As Aé
Type ggction | {sg.in.) | (sq.in.)
A 2" deep x I #7 wires 0.0492 0.0[92
2" wide (diameter = 0.177")
B 1" deep x I} #12 wires 0.0173 0.0173
2 wide (diameter = 0.105"




Sultable wooden forms were used to cast the specimens.(Fig.3.3)
A simple device as shown in Filg. 3.l was used to make the
reinforcement cages. The wires were first bent to the
required radius in a wire bending machine, and then
ingserted into the device mentioned above. Stlrrups were
tied at predetermined specing.

The concrete was mixed for 2 to 3 minutes ln a nine
cublc feet capacity tilting drum type mixer. The specimens
were left in the formwork for about ;8 hours, after which
they were removed from the forms and cured In the air of
the laboratory until tested. With each specimen, three
6" x 12" control cylinders were also cast and cured under
the same conditlons. These control cylinders were used
to determine the ultimate compressive strength f; of the
concrete, at the time the specimen was tested.

3.2 MATERIAL PROPERTIES

3.2.1 Concrete:

The concrete mix was deslgned for an f; of
3000 psi at seven days. The proportions by welght of the
cement, sand, gravel and water were as follows:

1 part by welght of high early portland
cement,

2.6l part by weight of sand,
2.10 part by weight of coarse aggregate,

7.25 gallons of water per sack of cement.
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With these proportions it was expected to obtain

f; equal to 3000 psl at seven days. However, for some test
specimens, the actual fé obtained from the test cylinders
was higher because 1t was not possible to test the specimens
exactly at seven days., In some cases, specimens were tested
after as much as thirty days, due to unexpected delays. The
actual value of fé of each specimen 1s given in Chapter .

The sand used had a fineness modulus of about 2,5,
The maximum aggregate size for Type A specimens was 3/8",
while for Type B specimens 3/16".

3.2.2 Steel:

Black annealed mild steel wlres were used as
the reinforcement. For Type A specimens, #7 wires (diameter =

0.177") were used, while for Type B Specimens #12 wires
(diameter = 0,105") were used., The strength properties of
these wires were as follows:
(a) ‘#7 Wires:
Statlic yielu stress f

v
Static ultimate stress fy = 51 ksi

= 40 ksi
Modulus of elasticity E, = 34.1 x 10® ksi

The stress-strain curve of this wire is given

in Fig. 3.5.
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(b) #12 Wires:
Statlc yield stress fy = LO ksi
Static ultimate stress fy = 49.5 ksi
Modulus of elasticlty E;, = 31.6 x 10% ksi
The stress-strain curve of this wire 1s gilven

in Fig, 3.6. .

3.3 LOADING CONDITIONS
In this test program, static and dynamic tests were

conducted for the followlng three types of loading conditions.

Type I - Uniformly distributed symmetric radial load:
This was simulated by ten point loads,

spaced at equal intervals on the periphery of
the arch as shown in Fig. 3.7. Each interval
subtends an angle of 18°¢ at the center,

Type II - Concentrated load at the crown of the arch,

Type II1TI- Antisymmetric concentrated loads at quarter
points on the arch,
These three loading conditions are shown in Fig. 3.7.

3.4 EXPERIMENTAL SET UP
3.1.1 Modification of the Existing Loading Machine:

The dynamlic loading machine(18)

, constructed
by the Department of Civil Engineering, M,I.T., under the

contract DA-}9-129-ENG-325, had to be modified to suit
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the loading conditions described in section 3.3. Wlth the
earlier version of the machine It was possible only to apply
a single point load on the test specimen. The modification
essentlially consisted of mountlng ten jacks on a sultable
frame, and in connecting these jacks through rubber hoses
to the auxillary oill reservoirs. In what follows, a short
description of loading Jjacks, rubber hoses, oll reservoirs
and the detalls of their connection with the previously
existing apparatus is given. For a detalled description of
the components of the original machine and the principal

of 1ts operatlion,reference 1s made tocle) .

(a) Loading Jacks: The preliminary esstimate of
the dynamic resistance of the Type A arch specimens showed
that the failure load under compression mode loading (i.e.,
Type I loading condition) would be about 6.5 to 7 kips per
jack. Therefore, 1t was decided to design the loading jacks
to develop a load of 12 kips at the maximum working oil
pressure of L4000 psi. The details of deslgn were based
on conslderations similar to those given in reference (18)
(Chap. V, Art c¢c). It was found that Hannifin Seriles "H"
square type hydraulic cylinders (manufactured by Haniffin
Company, Des Plaines, Illinois) with the followlng re-

quirements, were sultable for the purpose and accordingly

adopted.
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l. Bore diameter

2. Piston rod dlameter

0
'_l
ot

3. Stroke = p"

i+ Maximum Working Pressure = [,000 psi
These jacks are double acting - double rod end, with cushions
on both ends of the jack.

(b) Reservoir: In the modified loading system,
two reservoirs are used. One of them 1s interposed between
the pump and the push side of the loading jacks while the
other is placed between the pull side of the Jacks and the
dump valve of the original dynamic loading machine. These
reservoirs are in the form of cylindrical containers with
a sufficient number of outlets which can be connected to
the jacks. These reservoirs are shown in Flgs. 3.8 and
3.9. Various details, such as the dlameter of cylindrical
container, number of outlets, etc., are also marked in
Figs. 3.8 and 3.9. The reservoirs are designed to with-
stand an oll pressure of 5000 psi. The main purpose of
these reservoirs is to provide the means of supplying oil
to all the jacks at the same pressure so that the Jacks
can develop equal loads.

(c) Rubber Hoses: In order to have the flexibility
in connections between the reservoirs and the Jjacks, rubber
hoses were used Instead of metal tublng. These hoses are

3 wire braid high pressure hoses (working pressure = 5000 psi,
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1
and bursting pressure = 20,000 psi) with L internal diameter.

2
(d) Hydraulic Connection: The hydraulic cornec-

tions between various components of the loading system
are shown in Fig. 3.10.

The mailn cylinder of the machine 1s connec-
ted to the push side reservolr which in turn 1s connected
to the push side of the jacks:s The maln dump valve is
connected to the pull side reservoir which iIn turn is
connected to the pull side of the jacks. Heavy duty steel
pipes are used for connecting the main cylinder with the
push side reservolr and the dump valve with the pull side
reservoir. Connections between the reservoirs and the
loading Jjacks are through high pressure rubber hoses as
already mentioned.

The pull and push side reservoirs are inter-
connected by H" tubing so that equal pressure can be buillt
up and maintained initially on fthe pull and push side of
the jack. A needle valve 1s placed in this line, so that
by closing the valve, the two reservoirs can be discon-
nected before dumping the pull side reservoir through the
dump valve.

(e) Frame: The structural frame in which the

Hacks and the specimen are mounted, consists of WF I
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sections, PFig, 3.11 shows this frame with ten jacks
mounted for Type I loading. For Type II loading,only
one Jack 1s mounted at the proper place on the frame as
shown in Fig, 3.12, Two Jjacks are mounted on the frame ss
shown in Fig. 3.13 for Type III loading. 1In order to enhsure
that the applied load remains radial, as the arch deforms
under load, the jacks are mounted so as to allow them to
rotate with the arch., Thils 1s done by using pin conhnectlons
between the jacks and the frame and between jacks and the
specimen,

The plnned supports for the test specimen is
simulated by using specially fabricated devices as shown
in Figs. 3.1k, 3,15, 3,1% and 3,17,

3.4.2 Instrumentation and Measurements:

In order to study the behavior of the test

specimens, 1t 1s necessary to measure the following

guantities:

(a) Applied Loads,
{b) Reactions,
(¢) Radial deflection at crown and at i points,

(d) ©Natural frequency of the test specimens.
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(a) Applied Loads: The applied loads were
measured by mounting sultable load cells on the piston rod
of the jacks., The range of faillure loads between type A
specimens under compression mode loading {(Type I) and
type B specimens under deflectlon mode loading (Type III)
was quite large, Type A specimen under compression mode
had an estimated fallure load of about 7000 1bs, per jack,
while the estimated failure load for type B specimen under
deflection mode was as low as 100 1bs, per jack. Therefore
three different types of load cells had to be made for each
of the three load types. These load cells are shown in
Fig. 3.18.

Load cells for Type I and Type IT loadings were
essentially hollow circular aluminum rods on which are
mounted eight C-7 strain gages (4 sctive gages and L dummy ;

gages, resistance of each gage = 500 ohms), Load cells
for Type III loading were in the form of a u-shaped

aluminum frame on the vertical sides of which are mounted
eight ¢-7 straln gages, These straln gages are connected
to form a sultable wheatstone bridge circuit., The signal
from this strain gage brldge was fed into an eighteen
channel recording oscillograph, Type 5-11}-P3, manufactured
by the Consolidated Electrodynamics Company. (Hereafter

in this report this equipment will be referred to as the

C. E. C. recorder), The traces of the galvanometers
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of the C.E.C. recorder were recorded on photographic paper
in both dynamic and static tests.

Initially a few pllot tests were made on
type "A" specimens under Type I loading and in these tests
all ten Jack loads were measured to determine whether the
loads developed by all jacks were equal or not. These
pllot tests did confirm that the loads were equal and as
a consequence, it was decided to measure only five jack
loads during the tests.

(b) Reactions: Vertical and horizontal reactions
Wwere measured by the load cells as shown in Fig, 3.1li. Again
for the reasons mentioned above [article 3.l.2 (a)] various
types of load cells had to be made. These loasd cells are
in the form of so0lild or hollow aluminum rods of sultable
diameter, with square aluminum plates at thelr ends. These
load cells were useful for measuring relatively large re-
actlons. The ring type load cells which essentially con-
slsted of an aluminum ring between two square plates were
used to measure relatively small reactions. Elght C-7
strain gages were mounted at sultable places on these load
cells as shown in Fig. 3.19. The gages were connected
to form a sultable wheatstone bridge circult. The output

of the load cell was measured by the C.E.C. recorder 1n

both statle and dynamic tests.




The power to all the load cells was
suppllied by a Sorenson Transisterized D.C. Power Supply
(Model No. QR-36-LiA). The range of output voltage and
output current of this power supply unit 1s O - 36 volts
and 0 - |} amps. respectively, with a % regulation of
0.02.

{(c) Measurement of Deflections: In all tests,
radial deflectlons of the test specimen were measured at
the following points.

For Type I loading, radial deflections
were measured at the crown and at the points Sl degrees
from the supports (Fig. 3.20). Deflections were measured
at these 5° points rather than at the quarter points
because 1t was difficult to attach the deflection measuring
device at the latter due to the presence of the loading
Jack. In Type I loading, it was found during pilot tests
.that the supporting frame also deflected apprecliably and
therefore deflectlons of the support were also measured.
Electric inductance gages of the moving core solenoid
type, commonly known as Linear Varisble Differential
Transformers (L.V.D.T.), were used to measure the deflections.
These gages were of the type 1000 - 83 - L (manufactured

by Schaevitz Engineering Corportation) with a linear range
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of + 1.0". The core and the transformer of the L.V.D.T.
Were mounted on a special attachment shown in Fig. 3.21.

Oné end of this attachment was connected to the specilmen,
while the other end was connected at a sultable point
independent of the supporting frame. These connections were
such as to allow the attachment to rotate so that 1t re-
mained radial when the arch deformed under load. Fig. 3.1l1
shows the set up of L.V.D.T.t!s.

For Type II loading, radial deflections
were measured at the crown and at two guarter points (Fig. 3.20).
At quarter points the attachments as described In the
above paragraph were used to mount the L.V.D.T.'s while
at the crown the L.V.D.T. was mounted directly on the
jack. The setup of L.V.D.T.!'s is shown in Fig. 3.12.

For Type III loading, radial and tangential
deflections were measured at the two quarter points. Type
2000 - 83 - L L.V.D.T.'s with a linear range of + 2.0"
were used to measure the radlal deflectiong, while tangential
deflections were measured by type 1000 - s5 - L L.V.D.T.'s.
The L.V.D.T.!'s measuring the radial deflections were mounted
directly on the jack while the L.V.D.T.!'s, measuring tan-

gential deflections, were mounted on an attachment as
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shown in Fig, 3.13.

(d) Measurement of Natural Period: The
natural periods of types A and B specimens in the first
bending mode (1,e., antisymmetric mode) and in the second
bending mode (1.,e., mode corresponding to the configuration
of the arch under a point load at the crown) were measured,
For this purpose displacements corresponding to each mode
were given to the arch specimens, released suddenly, and
the resulting vibrations measured by very sensitive L,V,D.T.'s,
(Type 020 MS - L, linear range = X 0,02") connected to the
C.E.C. recorder,

3.5 TESTING TECENIQUE

In this sectlion a brief description of the method of
static and dynamic testing 1s given,

3.5.1 Static Tests:

The specimens were mounted in the frame and con-

nected to the loading jacks as shown in Figs. 3.11, 3.12
and 3,13, The specimens were loaded by continuously
building up the o0ll pressure on one side of the jacks, until

the specimens failed. A continuous record of all the

measurements was obtalned by running the C . E,C, recorder
‘at the slow speed of 0,80 in/sec, The duration of test

on an average was 3 to L minutes,
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3.5.2 Dynamic Tests:

The specimens were mounted in the frame and
connected to the loading jacks as in static tests. Equal
01l pressure was built up on both sides of the jacks. In
order that no load be applied to the specimen, while the
pressures were beling increased to the required value, 1t
was necessary to maintaln an equal pressure on both sides
of the jacks at all times. This was done by keeping
the valve which interconnects the pull and push slde re-
gervoirs, open. This valve was closed after the required
pressure was attained on two sides of the jack and then
the pull side was "dumped" by openlng the dump valve. The
latter was operated by sending a predetermlned command
signal to the servo valve which controls the dump valve.
In this way the dynamic loads with.a rise time between
10 to 20 milliseconds were applied to the test specimens.
A record of all measurements such as applled load, de-
flections, etc. with respect to time was obtained on the
C.E.C. recorder running at the high speed of 21.6 inches/sec.

In all cases a fallure pulse slightly greater
than the estimated fallure resistance of the speclmens
under each type of loading,was applied. Due to limitations

of the loading machlne, 1t was not possible to apply
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partlal loads on test specimens except for type “pt
specimens under compression mode loading (Type I),

because the fallure loads were too low In other cases.
Partial loads with a rlse time between 10 to 20 milliseconds
and a flat peak of considerably longer duration (about

1000 milliseconds) were applled to some of these type !

specimens.
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Figure 3.3 - Wooden Form Work for Type A Specimens.

Figure 3.4 - Device for Making Reinforcement Cages for
Type A Specimen.
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Figure 3.11 - Experimental Set Up -
Type I Loading.
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Figure 3.12 - Experimental Set Up -
Type II Loading.
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Flgure 3.13 - Experimental Set Up -
Type IITI Leading.
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- Attachment for L.V.D.T.

Figure 3.21




CHAPTER U

EXPERIMENTAL RESULTS

.1 INTRODUCTION

In thls chapter the test results of all specimens are
presented in tabular form (Tables L.l to L.6). In these
tables values of fé s experlmental failure load, experi-
mental deflections, and rise time of the failureload in
the case of dynamic tests are glven. Theoretical fallure.
load and deflections for each specimen, calculated on the.
basis of conventional theory presented in Section 2.5 of
Chapter 2, are also given. It should be noted that the
values of the theoretical deflectlons given in each table
are the elastic limilt values based on the failure load
obtained from the tests. Comparisons between the ex-
perimental results and those obtained by the analysis
presented in Chapter 2 are made and discussed in Chapter 5.
.2 SUMMARY OF TEST RESULTS - TYPE I LOADING

L.2.1 General:

The test results of type A" and type '"B" specimens
are summarized in Tables L.l and 4.2, respectively. As
mentioned in Section 3.3 of Chapter 3, the radial dis-
tributed load was slmulated by ten points loads on the
arch specimen. These point loads are converted into

equivalent distributed load per inch and these equivalent
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values are presented in Tables L.l and 4.2. Instead of
presenting the measured radial deflections at crown and at
5L° points separately, the summation of these measured
deflectlons 1s presented in Tables L.l and 4.2 and compared
to the corresponding theoretlcal values. This was done in
order to eliminate unsymmetric behavior of the test
specimen, which occured due to unavoidable irregularities
in the test specimens and in the loading apparatus. Certailn
specimens such as A-3, A-9, A-10 etc., or B-3, B-18
etc. are not included in Tables L.l and ;.2 because some
of these specimens were not tested due to excessive honey-
combing in the concrete, while for certain other specimens
relliable results were not obtained due to malfunctioning
of the loading device or measuring equipment.

h.2.2 Static Tests:

The results of the static tests seem quite
satisfactory. The variation in experimental fallure loads
1s well within + 15% of the loads predicted by the conven-
tional theory except for specimens B-l and B-2. In these
latter cases the concrete may have had less strength than
that Indicated by the test cylinders. It 1s also inter-
esting to note that, except for specimens A-1 and B-10,
the experimental failure loads are lower than those pre-

dicted by the conventlonal theory. Thils 1s probably due to
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secondary bending effects introduced for many reasons. The
detailed discussion on the comparison between test results
and the theoretical results is deferred until Chapter 5.

The failure of the specimens was mainly by the
crushing of concrete at a few points along the arch. In
a few cases; the specimen failed by crushing at only one
spot, while in other specimens the evidence of fallure was
distributed. Photographs of typical specimens after failure
are shown In Figs. L.1 and L.2.

For a few specimens such as A-1, A-2, B-1, etc.,
rellable deflection measurements were no£ obtained and
therefore these results are not given in Tables L.l and
it.2. Load deflection curvesof typlcal specimens are
given in Fig. 5,1 {(Chapter 5). Comparison between
theoretical and experimental failure loads 1s shown Iin Fig.
hhe3 to indicate the scatter In the test results.

Le2.3 Dynamic Tests:

In the dynamic tests of type "A" arches, specinens
A-8 and A-11 were tested by applying only one pulse corre-
sponding to the failure pulse. On specimens A-12, A-13,
and A-17, a partial pulse was first applled and measure-

ments obtained. These specimens were then tested under a
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fallure pulse. On specimen A-19 two partlal pulses were
applied before applying & fallure pulse. It was not possible
to apply partial loads to the type "B" specimens because

the failure loads are considerably lower and the loading
apparatus 1s not capable of producing partial dynamic

pulses sufflclently small.

Type "A" specimens show an average dynamic in-
crease of about 18% in fallure load over the theoretical
static fallure loads. Type "B' specimens show an average
increase of about 27% if specimens B-12 and B-13 which
show exceptionally large increases are not considered.

This percentage increase in the fallure loads seems
reasonable on the basis of the expected Increase in material
strength. The increase of about 100% in the fallure loads
for specimens. B-12 and B-13 cannot be fully explalned

on the basis of the increase of material propertles and
Inertial effects.

The failure 1in all specimens was malnly by the
crushing of concrete simultaneously at a few points along
the arch. Fhotographs of typlcal specimens after fallure

are shown Iin Figs. L.l and L.5.
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The load-time curves and deflection~tlme curves
of typical specimens are given in Figs. 5,2, 5,3, 5.4 and 5.5
of Chapter 5, and the load~deflection curve of type A"
specimens 4{s shown in Fig. 5,6 Chapter 5. In this
curves the partial and fallure loads of each specimen are
non-dimensionalized with respect to the theoretical
static failure loads. These non-dimensionalized values
are plotted against the corresponding experimental
deflections values given in Table L.1l. The experimental
failure loads are plotted vs. theoretical static loads
in Fig. 4.3 to indicate the scatter in test results and
the general difference between static and dynamic results.
L3 SUMMARY OF TEST RESULTS - TYPE II LOADING

L.3.1 General:

The test results for type "A" and type "B"

specimens are summarized in Tables 4.3 and L.l, respectively.
h.3.2 Static Tests:

The results of the static tests seam quite reason-
able. The failure load of B-19 is within 2% of the failure
load predicted by the conventional theory. While for
specimens B-21, A-21, and A-22, the experimental values
are higher by 10 to 15%. There are several factors which

could have caused the higher experimental values. One
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reason could be that the supports may not behave like
perfect hinges and may Introduce some restraint, which would
tend to increase the experimental fallure load. Secondly,
the yleld stress fy in the steel is taken at [0 ksi,
while predicting the conventional theoretical loads. The
stress-strain curve of the steel {(See Figs. 3.5 and 3.6)
is not exactly bi-linear but follows a flat curve after
4O ksl. It is obvious that the strain in the steel at
failure in both "A" and "B" specimens is much greater
than the yleld strain at L0 ksi, which suggests that
at failure the stress could be higher than 4O ksi.
Therefore, the experlimental fallure loads could be higher
than that predlicted by conventional theory using
I‘y = /0 ksi.

The failure of the speclmens occured by the
formation of three hinges, one at the crown and the
other two in the vicinity of the quarter polnts. The
locations of these latter hinges almost colnclded with the
theoretical prediction of hinge formation at points 38°
from the supports. Photographs of typical specimens

after failure are shown in Figs. 4.6 and L.7.
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The failure of the specimens seemed quite ductille.
The maximum radlal deflection at the crown was of the

1y

order of 0.45" for type A" and 0.85" for type "B” specimens.
yp

Tne load-deflectlion curves of typical specimens
are glven in Fig. 5,7 and 5.8 Chapter 5. To represent the
scatter in test results the experimental failure loads
are plotted against conventional theoretical loads in
Flg. LL.8.

Le3.3 Dynamic Tests:
All specimens were tested for fallure only.
Because the failure loads were extremely small, no
attempt was made zo apply partial loads.

Type "A" specimens show an average dynamic
increase of about 55% in the fallure loads over con-
ventional theoretical static failure loads. For
Type ''B" specimens the increase 1s of the order of 70%.
Part of this rather large dynamic Increase can be
attributed to the larger than expected static strength
as discussed In the preceeding section. The remaining
Increase is due to the increase in material properties

due to very rapid strain rates and to ilnertial effects.

On this basls, the test results seem quite reasonable.

_1.13_




The failure of the specimens was similar
to that observed in static tests as described in
Section 4.3.2. Photographs of typical specimens after
failure sre shown in Figs. .9 and l.10.

The fallure of the specimens seemed quite
ductile, The maximum radlal deflection at the crown
was about 0,5" for type A and about 0,9 for type B
specimens,

The load-time and deflection-time curves of
typical specimens are shown in Figs. 5.9 and 5.10
Chapter 5. The scatter in test results is indicated
by Fig. L.8.

L, SUMMARY OF TEST RESULTS - TYPE IIT LOADING
4.lt.1 General:

The test results for type A and type B specimens
are summarized in Tables .5 and l.6, respectively. The
results for specimen B-28 are not given in Table .6,
because no reliable results were obtained,

The deflection data in Tables 4.5 and l.6, clearly
indicate that the strain in the steel wires at failure
must have been conslderably higher than the strain
corresponding to a stress of [0 ksil, at which yielding
begins, Therefore, as explained in Section L.3.2, it

seems reasonable to assume a higher value of f_ while

v
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calculating the fallure load based on conventional theory.
A value of I16 ksi 1s used in the calculation of these
conventlonal theoretical fallure loads.

h.le2 Static Tests:

The results of the static tests of type "A"
specimens seem qulte reasonable. Experimental faillure
loads on an average are about 9% higher than the
conventlonal theoretical fallure loads, except specimen
A-33, for which the failure load is lower by about 9%.
The latter specimen was actually loaded twice. The first
run was terminated after about 60% of the failure load
had been applied, due to difficulties in the loading
device. It was then loaded to failure. The preloading
could have damaged the specimen and caused fallure under
a lower load. The increase in the failure load of all other
specimens over the conventional theoretical load seems
partly due to the restraint at the support as explained
in 8ection l;.3.2 and partly due to the effect of the
weight of the loading jacks on the test specimen as
explalned below.

It is clear from Flg. 3.13 that about half the

weight of the jack 1s applied to the arch at the loading
points., Theoretical considerations indicate that 1f the

top jack was "pulling" the arch and the bottom jack "pushing"
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(see Filg. 3.13), the fallure load increases by the same
amount .as the applied welght of the jack., On the other
hand, with the top jack "pushing" and the bottom jack
"pulling", the fallure load decreases by the same amount,
This effect 1s more severe in the case of %type

B specimens because the fallure loads are only six to
seven btimes the applied weight of the jack (which is about

10 1bs) as compared to L0 times the applied weight in the
case of type A specimens, In order to eliminate this
effect, specimens B-26 and B~27 were tested with the top jack
"pulling" and the bottom jack "pushing", while the reverse
was done for B-29 and B-30, Table 4.6 indicates that the
average of the failure loads of B-26 and B-27 is 91 1lbs,
and of B-29 and B-30 is 52 1bs. Therefore, an average of
these two values or about 71 1lbs, should be considered as
the experimental failure load., The average conventional
theorétical load for these specimens is about 60 1bs,, and
the eleven-pound increase in the experimental load can
easily be due to the varlous factors mentioned previously,
or small errors in measuUrement, The test results are
therefore considered quite reasonable,

The faillure of the specimens occurred by the form-

ation of hinges very nearly at the quartér points., FPhoto-
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graphs of typical specimens after failure are shown in

Figs, 4.11 and Lh.12, The failures were quite ductile with
maximum radial cdeflection at the quarter points of the order
of 1,5" for type A specimens and about 2" for type B
specimens,

The load deflection curves of typilcal specimens
are given in Figs, 5.11, 5.12 and 5,13, Chapter 5., The
experimental fallure loads are plotted against conventional
theoretical loads in Fig. 4.13 to indicate the scatter in
experimental results,

L.4.3 Dynamic Tests:

All specimens were tested for failure only,
No attempt was made to apply partial loads for the reasons
already mentioned.

Type A specimens show an average increase of
about 8% in failure loads over the conventional theoretical
static failure loads, Out of this about 10% is probably
due to partial support restraintand the effect of the
welght of jacks on the fallure loads, as already explained
in previous sections, The remaining Increase 1s attributed
to the lncrease 1n the material properties due to rapid
strain rates and inertial effects, This Is discussed in

more detall 1n the next chapter,
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Dynamic tests on type B specimens were performed
with the top jack "pulling" and the bottom jack "pushing".
No tests were performed in the reverse condition as was
done in static tests., Therefore, the results of dynamic
tests of these speclimens should be compared with the corres-
ponding results of the statlc tests, i.e,, the results for
specimen B-26 and B-27. This type of comparison shows an
average increase of 180% in dynamic failure loads. This
increase seems to be due to the increase in the material
properties under very rapid straln rates and inertial
effects, This gspect is discussed further in the next
chapter,

The fallure of the specimen occurred by the
formation of hinges very nearly at the quarter points, as
in the static tests, Fhotographs of typical specimens
after failure are shown in Figs., L.1l and 4.15. The failure
of the specimen was quite ductile. The maximum radial
deflection at gquarter points is about 1.25" for type A and
1.7" for type B specimens. N

The load-time and deflection-time curves for
typical specimens are shown in Fig. 5.1 and 5.15 in
Chapter 5. To indicate the scatter of experimental results,
experimental failure loads are plotted agalnst theoreticsal

static faillure loads in Fig, L.13.
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SUMMARY OF TYPE "A" SPECIMENS - TYFE I LOADING

TABLE 1.1

Y

' P p P t pXT Ewnm
Type |Speci-i Type £, UExp Ury UExp r Eﬁ Ty =S W
of men of ° ST 1577 [(wi111- m “Exp T ¥mpy
Test No. Pulse (pst)] (1bs/in) |[{1bs/in) UTHST seconds) | (inch) |(inch)
S A-1 4300 | 1218 1030 | 1.18
T | A-2 3460 765 875 | 0.875
A
? A=l 1,010 970 980 | 0.99 0.086 lo.o77 1.12
c A-5 3800 920 930 | 0.99 - 0.135 |0.076 1.78
, ,
A-8 Fguigze L160 | 1130 1005 | 1.13 8 0.235 |0.088 2.67
A-11 F;i%gg? 3500 | 1010 880 | L.15 10 0.253 |0.085 2.98
ti e
s || s s [
D A-12 31,00
Failure A
- S 1108 860 | 1.29 11 0.213 10.095 2.2
N ‘Partial u78* 12 0.17}4°
A Pulse I | -7k
A-13 | 3160 | .
Failure
M iulee 980 815 | 1.20 10 0.290 |0.086 3.38
I -
‘Partial 3% °
¢ Pulse I 700 19 0.130
A-17 3h4o
Fgéigge 920 870 | 1.06 11 0.176 {0.078 2.26
Partial 2 o
Pulse I 565 16 0.153
| A-19 |Pulse II |26L0 735% 20 0.182°
ng%gze 880 715 | 1.23 11 0.118 ¥ g.061F 1.94

%

These are the summations of max. deflection at crown and at SL° points, at load

corresponding to the flat peak at partial pulse.

p
UExp
pu
THgn,
iiwm
Zyw.
Ty

t
r

- Experimental failure load.

- Theoretical statlc failure load.

These are loads representing flat peak of the partial pulse.

This is the summation of radial deflectlon at crown and at ome Sh4° point

- Summation of maximum experimental radial deflectlions at crown and at two SL° polnts.

- Summation of theoretlcal elastic radial deflection at crown and at two 54° points,
at experimental failure load.

Rise time of the load.
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45 NATURAL PERIOD OF ARCH SPECIMENS

The natural perlods of the arch for the first bending
or antisymmetric mode and the second bending mode (i.e.,
the mode corresponding to the configuration of the arch,
under a point load at the crown) were experimentally
‘determined for one speclmen of each type. These values
are given in Table L.7. The natural period for the

compression mode% was not determined experimentally.

TABLE U.7
NATURAL PERIODS

-
i

¥

f Mode Natural Period (Milliseconds)
;

i Type A Type B

! Specimen Specimen

§ 4

{ First bending mode : 25 59
§Second bending mode 6 12

|

*The natural period in the compression mode 1s approximately
given by r/1800 (see Ref. No. 13 in bibliography, p. 5B-15).
Therefore the natural period for both types in the compression mode
is about 0.83 milliseconds. In the above formula "r" is the

radius in feet.
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Flgure .1 - Appearance of Specimen A-l after Test -
(Static Test - Type I Loading).
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Figure L.2 -~ Appearance of Specimen B-10 after Test -
(Static Test - Type I Loading).
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Figure lL.l4 - Appearance of Specimen A-17 after Test -
(Dynamic Test - Type I Loading).
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fFigure .5 - Appearance of Specimen B-13 after Test -
(Dynamic Test - Type I Loading).
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Pigure 4.6 - Appearance of Specimen A-21 after Test -
(Static Test - Type II Loading).
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Figure L.7 - Appearance of Specimen B-21 after Test -
(Static Test - Type II Loading).
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Figure 4.9 - Appearance of Specimen A-25 after Test
(Dynamic Test - Type II Loading).
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Figure L4.10 - Appearance of Specimen B-22 after Test -
(Dynamic Test - Type II Loading).
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Figure L.11 - Appearance of Specimen A-30 after Test -
(Static Test - Type III Loading).
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Figure L4.12 - Appearance of Specimen B-26 after Test -
(Static Test - Type III Loading)
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Figure L.1lL - Appearance of Specimen A-35 after Test -
(Dynamic Test - Type III Loading).
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Figure .15 - Appearance of Specimen B-31 after Test
(Dynamic Test - Type III Loading).

- 1L|-0'




CHAPTER 5

COMPARISON OF THEORETICAL AND EXPERIMENTAL
RESULTS

5.1 INTRODUCTION
For the purpose of comparlison, certain experimental

specimens of both type A and type B are analysed theoretically.
The nonlinear theory developed in §'2.1 through §\2.u i3 used
to obtaln the static and dynamlc response, ultimate loads and

mts for type I and %ype III loading. The average dynamic
strain rate édc necessary to obtaln the dynemic properties of
concrete (equation 2.2b) is calculated as ege = ey/tr. These
ultimate loads and u's are called analytical results. The
elastlic limit deflections needed to calculate the _m's are
obtained by using the formulae presented in § 2.5. Further,
a set of static ultimate loads for all three types of loading
1s also obtained from the conventional theory presented in %2.5.
The ultimate loads calculated in this way are referred to as

"theoretical ultimate loads".

5.2 THEORETICAL AND EXPERIMENTAL RESULTS AND THEIR
COMPARISON.

5.2.1 Type I Loading:
A summary of the experimental and analytical

values of the ultimate loads and ut's for certaln specimens

of type A and type B is given in tables 5.la and 5.1lb
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respectively. Also listed In the tables are the theoretical
static ultimate loads.

(a) Static Behavior:

Tables 5.1a and 5.1b clearly show that

the analytlical values of the ultimate loads agree within
ten percent with the experimental values for specimens A-2,
A-l, A-%, B-11, B-15, and B-16. However, the experimental
ultimate loads for specimens B-l and B-2 are much lower and
those for A-1 and B-10 are higher than the analytical values.
This may be due to a possible difference between the strength
of concrete in the test specimens and that indicated by the
test cylinders.

The comparison between the theoretical and experi-
mental ultimate loads has already been made in .2.2. Bow-
ever, sttention is drawn here to the fact that the experiment-
al fallure loads are in practically all cases lower than the
theoretical fallure loads. This seems to be due to the
presence of secondary banding effects which are not considered
in the theoretlcal calculations. The secondary bending
effects occur for such reasons as: (1) the shape of the arch
does not confirm to the funicular polygon of the compression
mode loading; (2) in the tests, the uniformly distributed
load is simulated by ten equally spaced point loads;(3)These

ten point loads, applied on the test specimen may not be
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exactly equal, due to the limitations of the loading
apparatus; (L) the arch cross-section may not be exactly
uniform along the length.

A comparison between the analytical and theoretical
values shows that both agree within ten percent for most of
the specimens. The analytlcal values are, however, consist-
ently lower in all cases; the reason being that the secondary
bending effects are not considered in calculating theoretical
loads.

Table 5.1 (a) and 5.1 (b) also indicate that except
for specimen A-5, the experimentall/u -~ values are lower than
the analytical u - values.

FPig. 5.1 shows the analytical and experimental load-
deflection curves for specimen A-5, seslected for illustration,
to be in falr agreement.

{b) Dynamic Behavior:

It 1s seen from tables 5.la and 5.1b that the
analytlical values of dynamic ultimate load agree within
about fifteen percent with the experimental values for all
specimens except specimens B-12 and B-20. The high experi-
mental ultimate loads for these speclmens may be In part due
to an Increase in material strength under rapid strain rate,
higher than that considered in the snalytical approach.

The analytical and experimental ju=-values lile

within a range of 1.5 to 2.5.
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Figures 5.2 5.3 and 5.5 show analytical and
experimental load-time and deflection-time curves for
specimens A-11, A-17 and B-1ll;. These curves represent a
failure load pulse. Specimen A-17 was also tested under
partlal load pulse and the load-time and deflectlon-time
curves for thils partial load pulse are shown in figure S.l.
All the curves show a falr agreement between the analytical
and experimental results. Figure 5.6 shows the analytical
and experimental dynamic load-deflection curve for type A
speclimens. The polnts on the experimental curve are obtalned
from a number of tests by nondimensionalizing the dynamic
load with respect to the corresponding theoretical static
ultimate load of each test. The analytical curve pertains
to specimen A-17.

(¢) Comparison Between Dynamlic and Static
Behavior:

Table 5.3 shows the experimental and
analytical values of the dynamic Increase factors (DIF) for
both type A and type B specimens. The dynamlc increase
factor 13 obtailned as a ratio of the average nondimensional
dynamic load to the nondimenslonal static load; the average
being obtained from the values given in tables 5.la and 5.1b.
The values of experimental ultimate loads of specimens B-12
and B-13 are not considered in obtaining the average non-

dimensional dynamlc load because these values seem

-1hh-




unreasonably high. The experimental and analytical dynamic
Increase factors vary between 1.2 and 1l.4. This increase
is mainly due to the increase in the properties of materials

at very rapld strain rates.
5.2.2 Type II Loading

No comparison between the experimental and
analytical results under this type of loading 1is possible
because the non-linear theory cannot be used to predict the
ultimate loads for the reasons explained in § 2.1.3. A
comparison between the experimental and theoretical fallure
loads is already made and reasons for the differences in the
values, if any, are explained in § 4.3.2. Therefore, in
what follows, only a comparlison between the experimental
static and dynamic behavior is made.

Inh table 5.), tne values of static and
dynamic ultimate loads for the type A and type B arches are
glven. These are the average values of those given in
tables ;.3 and L.l for type A and type B specimens respec-
tively. It 1is reasonable to take such an average, even
though the value of fé varies, for each specimen in the
tests, because the influence of £ on the ultimate loads
of such underreinforced elements, where the bending
moment 1is predominant compared to the axial thrust, is

insignificant. Table 5.4 shows that the dynamic increase
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i{s of the order of 36% for type A arch and about 57% for
type B arch. This increase seems to be partly due to the
increase in the material propertles under very rapid strain
rates and partly due to inertlal effects.
The load-deflection curves for specimens A-21
and B-21 (static tests) are shown in Figures 5.7 and 5.8,
while Figures 5.9 and 5.10 show the load-time and deflection
time curves for specimens A-2l; and B-2l; (dynamic tests).
5.2.3 Type III Loading
The experimental values of the statlec and
dynamic ultimate loads and _u's for type A and type B arches
are given in table 5.2. The values of the theoretlcal
static ultimate loads are shown in table 5.2. These values
are the averages of those presented in tables 4.5 and L.6.
The analytical values of the statlc ultimate loads and a's
given in table 5.2 are those obtalned for specimens A-3l
and B-26, while the corresponding values for dynamic tests
are for specimens A-~37 and B-32. The analytical values are
calculated by taking fy = 446 ksi, for the reasons explained
in article L.L4.1l, A comparison between these analytical
values and the average experimental values is reasonable,
for reasons already mentioned In the previous section.
(a) Static Behavior:
The experimental ultimate loads agree

with the analytical and theoretical values within about

-1“6-




ten percent. Table 5.2 also Indicates an excellent
agreement between theoretical and analytical values of
ultimate loads. The analytical values of _u's are much
smaller than the experimental u's because of the convergence
difficulties in the analytical approach as explained in
§ 2.3.7. PFigures 5.11, 5.12 and 5.13 show the analytical
and the experimental load deflection curve for specimens
A-28, A-3l and B-26 respectively.

(b} Dynamic Behavior:

The analytical value of the ultimate load
of the type A specimen is 17% lower than the experimental
value while for the type B specimen, this difference 13 as
high as 40%. The analytical _u's are lower than the
experimental am's. The lower ansalytical u-value can be
explained on the basis that in the analytical calculations,
the arch 13 considered to have falled when the compressive
strain In extreme fibres at any one point in the arch
exceeds e,; = 0.0038 inches/ in.: while in tests, the
extreme fibre stralns at failure could be much larger than
ey In figures 5.14 and 5.15 are shown the analytical and
experimental load-time and deflection-time curves for
specimens A-37 and B-32 respectlively. These curves indicate
a fair agreement between the analytical and experimental

results.
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(¢) Comparison of Dynamic and Static Behavior:
In table 5.4 a comparison between the

experimental and analytical dynamic increase factor (DIF)
1s sought. The value of the experimental static ultimate
load for type B afches, glven in this table is an average
of those of specimens B-26 and B-27; while the specimens B-29
and B-30 are not considered 1n this average value, In order
to have a consistent comparison between static and dynamic
behavior as explalined in detail in paragraph 3 of $ Lelyo3e

The experimental values of the dynamic increase
are of the order of 65% and 179% respectively for the type A
and type B arches. The corresponding analytical values are
49% and 145%. Thus the agreement between the experimental
and analytical values 13 quite good. This dynamic Increase
seems to be due to the lhcrease in the material properties
under very rapld strain rates and also due to inertial
effects. The comparatively larger dynamlc increase in the
case of type B arches 13 possibly due to the presence of
substantial inertial effects,as compared to type A arches.

The experimental as well as analytical u-values

for the dynamic case are smaller than those for the statilc
case. (See table 5.2). This is, in part, due to the fact
that the elastic-limit deflections are calculated at the

ultimate loads which are considerably higher in the dynamic
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case, Therefore the elastic~limit deflections are

considerably higher and the jJu-values are lower,
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CHAPTER 5

CONCLUSIONS

The following conclusions can be drawn on the basis
of the analytical and experimental Investigations as well
as the approximate theoretlcal analysis.
1) The static ultimate loads obtained experimentally
are in good agreement with both the conventional
approximate theory and the non-linear theory developed

herein.

2) In the compression mode loading, the dynamic
Increase in ultimate load is mainly due to the
increase in propertles of materisls under very

rapld strain rates. This increase is about 30

to 35%.

3) In the cases of a concentrated load at the

crown and antisymmetric concentrated loads at

quarter points, the natural periods of the arches

in the flexural mode (and hence the inertial effects)
have a significant influence on the dynamic increase.
This Iincrease 18 much higher than that in the case of

oompression mode loading.

L) In the compression mode loading the analytical
and experimental values of u are of the order of

105 to 2.50
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S} For a concentrated load at the crown the
experimental value of u 1s about 9 for the

static case and about 7 for the dynamic case.

6) The experimental value of u for antisymmetric
concentrated loads at quarter points 1is of the
order of 15 for the static case and varles between

3 and 7 for the dynamic case.

7) The analytical approach is adequate to compute
the ultimate loads in moat of the cases consldered;
however, 1t gives qulte conservative results for

the dynamic antisymmetric quarter point loading.

8) Experimental and analytical results indicate
that the approximate static theory is qulte adequate
to predict the statlc ultimate loads for under-
reinforced sectlions. The dynamlic ultimate foads

for compression mode loading can also be predlicted
by the approximate theory provided that an approp-
riate dynamic increase factor (based on the increase

in material properties) is used.

9) PFrom the comparison between the analytical
results and those obtalned from the approximate
analysis based on a single degree freedom system

(§ 2.7) tt seems that the latter may give
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unconservative dynamilc fallure loads, 1f the duration
of loading 1s less than about half the natural period.
However, clear reasons to explain this fact are not

evident and further 1lnvestigation is needed.
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APPENDIX I

VARIOUS CONSIDERATIONS.FOR FORCE-STRAIN RELATIONS
BASED ON LINEAR CONCRETE STRESS-STRAIN CURVE

As explained in § 2.3.4, in order to solve the non-
linear force-straln relations to obtain strains e; and
€4, 1t 18 necessary to have certain approximate values
of these strains to start the 'Newton-Raphson iterationt!
(Appendix II). These approximate values of strains at
the bottom and the top of the section denoted here by ee;
and ee, are calculated by assuming that the stress-strain
curve for concrete 13 linear with a modulus of elasticity
Ec’ and that the tensile stresses in concrete are neg-
ligible. The value of Ec is assumed to be less than E_,
the initial tangent modulus, so that the llnear stress-
gtraln curve closely approximates the non-linear curve
even at high stress levels. The following consideratlions
are necessary to calculate the values of ee; and ee,.

At any section i, ﬁi and Mi are known. From these

are calculated,
_ m - " R ‘
N=N. fcbt and M = M £ Dbt (Al.1)

Also are calculated the gross Area Ag and the gross moment

of inertia Ig‘of the sectlon.
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"T

fe—

Ay = bt + p,bt(n-1)
: (a1.2)
=02 pt(me1) &
and - Ip =y pgbbin-l) T

The various possibllities of the strain distributions
on the sectlon are,

(1) N =0 and M is positive or negative:
| €€4 ._264

T kd ; |

di ‘ : K 3 + M
/)

Figure Al.1 Strain Distribution - Case (1)

(11) N 1is positive and M is positive or negative:
There exlst two possibilities in thils case.
Ir lML <:: EEE the entire sectlon is under
N AN tAg ’

compression (Fig. Al.2); otherwise the section 1is partly

in compression and partly in tension (Fig. Al.3).-

e
€a

ee
A
+M
L ‘;_ +N (—}—— +N
-mM
eel

ee

Figure Al1.2 Strain Distribution - Case (11)

-17)-




—
~
.

i

Figure Al.3 Strain Distribution - Case (11 )

ee“
/ +M
705 SN g

N

-ee
i
Figures Al.l Straln Distribution - Case (1ii)

(1i1) N is negative and M is positive or negative:
Again there exist two possibilities. The first
possibility is that the section is partly in compression
and partly in tension (Fig. Al.lL), while the second
possibility iIs that the section is entirely under tension

(Fig. Al.5). The criterton used for distinguishing these
possibilities from each other 1is:

N M R : :
If |?| - I ;;3 0, Fig. Al.5 is applicable, and
if otherwise, Fig. Al. L is to be used. This criterion
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is approximate since lgl - % -<: 0 indicates that
the strains In the concrete cover over the top steel (1if
M is positive) or in the concrete cover over the bottom

steel (if M is negsfive) are compressive. This signifies
that the section is not completely in tension until |N|

1s somewhat greater than that required by this criterion.
However, since the depths of concrete covers are usually
small as compared to the total depth of the section, this

approximate criterion 1s accepted.

-ee - ee
“q 4
7r T:::::%I: +M E:::%::::
d / —E}—%» -N \ —i?—e»-N
JL / \
4 . —M
—ee - ee

Figure Al.5 Strain Distribution - Case (iii)

The equations necessary to calculate the strailns
ee and ee in all the above cases are readily obtained
by consldering the equilibrium_of the internal and
external forces acting on the section. These equations
and the criteria used to classify all the cases are

incorporated in the computer program, (Appendix III).
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APPENDIX II

'NEWTON-RAPHSON ITERATION' FOR. SOLVING
NONLINEAR SIMULTANEQUS ALGEBRAIC EQUATIONS

A2.1 '"NEWTON-RAPHSON' METHOD

This method' 2

affords an effective lterative procedure
to obtain the solution of two or more simultaneous non-
linear equations. For example, the two simultaneous

equations of the form,
f(x,y) =0, g{x,y) =0 (A2.1)

having (cC,A) as one of 1ts real solutions can be solved
to obtain o and A as follows:

The two functions can be expanded in a Taylor series

as,

0=r(€,B) = flx,y,) + (€=-2)f (x,7,) W

CoEe g (/S-yk)fy(xk,yk) Foaeons

& (A2.2)
0=glee,p) = glx,y) + (x-x g (x,7,)
+ (ﬁ-yk)gy(xk,yk) +oeo

: J
where X and ¥, are the values of the kth‘ lteration, If

6C and A in the terms on the right-hand side of the
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expansion are replaced by Ept and Y12 respectively,
and the terms nonlinear in (xk+1- Xk) and (yk+1 - yk)

are neglected, the following recurrence formulae are obtained,

\
(Axk)fx(xk;yk)"'( Ayk)fy(xk:yk) = -f(xk’yk)
r (A2.3)
(Ax g, (x, )+ By e (x,7) = -8lx, ¥,
~
where ISXK = Xy ~Xy
> (a2.Y4)
and AV T Vs TV J

are the corrections of kth iteration.

The iteration 1s started at a value (xo, yo) which

is sufficiently near (®,A ) and equations (A2.3) and

(A2.])) are used to obtain successively better values of

the roots of the equations (42.1). The iteration is

continued until the corrections beéome smaller than some
assigned tolerance limlit. The advantage of this method

over others is that this is a 'second-order' process; that 1is,
then the lteration converges, the errors in the (k+l)th
iterate tend to be linear combinations of the 'squares!

h

of the errors in the kt itterate.
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A2.2 APPLICATION OF THE METHOD TO THE PRESENT PROBLEM
As is explained in § 2.3.4, this method is used to
solve the governing equations (2.26) and (2.27) or (2.28)

and (2.29}. The forms of equatlons used are as follows:
Using the notation

X = ey, ¥ eq4,

~
il
=
n
g
t
0
S
S
[
o]
Qs
~
[¥}
]
=
n
ke
ot

£
ez = e, + (e, - €1) & __Eg—
d
and ez = e; + (e, - eq1) I

(x * )
+y + + -
£ix,y) = kix+y) + (x ¥) - AX X¥é Y -f =0
ec 39 c
'z 2 2

d - X (y-x) 2(y+x)
g(x,y) = 3 — (y-x)% + (5’_6 _x) bi <) (1

% e, e . ? (42.5)

- M(y-x) =0
when ez $; ey and eg <;ey,
v
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ki, & P .
£x,y) = kaeg - g— [x + (y-x) 3] + kx + 3 (y-x)(t-d)
2
+(X‘:'Y) (x +x}'{2+y)_ﬁzo
€ e 360
ki ! kq d' 4 .
gny) = -z g ) -y gy (yex) F (52.6)
AZ.H)
1
kl d' e ( k g
_ y-x) - 5 £ x(y-x)
* 5% 2 %
! 2
k g (t'd) - 2 ('y_x)
-3 ¥ Tt (y~x)~ + " LI
€c
S . ‘('%1'3() - M (y-x) = 0
12e
¢
when €z < ey and ey > ey s J
and
k 2 AR
' +xy+y>
f(X,y) = 2k1 ey - —_— (x+y) -+ (XTY) _ (X )'(z v )
ec Bec
- ﬁ paad O
L& te 2
d (v-x)
gloy) = - x S5 (yex) - 2 (42.7)
t 6ec
' 2
- (I’Xiz -E}§+x) M (y-x) = 0
€
when eg> oy and e3‘> ey
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Similarly equations (2.28) and (2.29) become,
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K Ky ka4 .
£(x,y) = ki (y°-x) - XYt x® - 3 (y-x)
2 3
v Lo, - Ry =0
e 3e
¢ ¢ \(a2.8)
K1 15 Ky 1 2
a -
gy = oz 5 - E =ee)
K1 ' 4
. - 4 d )3 + ¥ i
= T ot (%) e T2
’ 12e
2 3
- y)'( + Y 752 - IVI (Y_X)z = 0
2e be
c
h d
when eg gg'ey an e S; ey s J
Ka ki g =)
flx,y) = - key (y-x) + (k1 - 5) X (y-x) +(ka- 77) % (y-x)
2 3 -
+ Lo - I—Tz - N (y-x) = 0
e 3e
c c
kl ' kl d' 1 3
glx,y) = ’2_%— (1- =) x (y-X)2+—2— -t—-%— (1- Z)(y-x)
Kk ! a 4 2 .
+ Ei‘ %— o (y-x)° +I— - I - L% }(A2.9)
e 1%e 2e
c c
3
+ xg - f(y-x)% = 0
be
when lee] :> |ey| and ea<< ey,
4




flxy) = kix (y-x) + ki (y-x)" + kie_ (y-x)
kl kl d 2 2
- = x(y-x) - T I (y-x) +§T—
c
3
s N (y-x) = 0
3e,
k1 .d' 2 l{l d'
g(X,Y) = 7 ’,E" 'e_y (y"x) - 75 T X(Y—X)
kq d' k1 dl
- — 7 (y-x)7 - — x(y-x)
7n % VY 70T
K1 g' (t-q ° 5
i e M S
be 12e
¢ c
XZX sx - 2
- S - B o= o
2e be
c
when |e2|< ‘ey| and e5> e'y R
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~
k'1 kl 2
f(X’y) = - H— X(Y‘X) - —ﬁ— -E (Y—X)
2 3
+ 7 - - Fyw o= o0
[
€, e,
a' 2 k1 g
g(x,y) = k1 +— e (y-x) - == x(y-x) (A2.11)
t N 2n % /
kl 1 > 4
d
- — t (yv-x)®+ I - L
n t % 6e; 12
I x_ ., I°x 2 _
- 5 e - M (y-x)" = 0
e e
when |e=| ;2 |ey[ and ea ;2 ey ]

The initial values (x_,, y,) for starting the iterations
of equations (A2.5) or (A2.8) are obtained as described in
Appendix I (i.e., x, = ee; and y, = ee,), while those

for starting the 1lterations of equations (A2.6), (A2.7)

or (A2.9), (A2.10), (A2.11) are obtained from the solutlans
of equations (42.5) or (A2.8), respectively. If M is

negative, the terms e, and e; are interchanged (i.e.,
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X = e4 and y = e;) and the same equations then are
employed along with the absolute value of M.
A2.3 MODIFICATION OF THE METHOD
The method described above has been found to be adequate

for most of the cases. However, it has to be slightly
modifled in two cases. Both of these cases occur when the
load on the arch is near to the ultimate load. As
described in §2.3.5,the method of obtaining the ultimate
load consists of successively increasing the load by a
small amount and checking for fallure at each step.
The following two types of difficulties can occur during
this process,

a) If the load on the arch happens to exceed
the ultimate load, the internal forces N and M acting
at the critical section (1.e., the section at which
the maximum concrete strain occurs) become too large
and the solutions of the governing force-strain relations
converge on erroneous values after going through a large
number of lteratlions. In a normal case, 1t takes a
maximum of only fifteen 1lterations to obtain the con-

vergence. Therefore, if for any case it takes more than
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say thirty iterations to obtain convergence it is certain
that the internal forces are too large, caused by too
large a load. Consequently, the occurence of thirty
iterations or more 1s taken as a criterion to identify
the case of too large a load and to stop further
iterations.

b) In some cases when the load on the arch isg
slightly less than the ultimate, the functions f(x,y) = 0
and g(x,y) = O describing the force-strain relations
exhibit a peculiar behavior. For clarity, this phenomenon

is discussed here for a function having only one variable,

say, F (Z)=0. The recurrence formula for the '"Newton-
Raphson iteration' In this case 13(12),
. F(z) 2
Az = Z - Z = - —— (A2.12)
F(Z“}

If the curve F( Z ) = Z 1s as shown in Pig. A2.1 and we
are interested in a solution z = 7 , we must start

the iteration at a value =z >’)’/ such that F'( z,)<KO0
If instead, we happen to start the lteration at z°‘< 9/,,
the solution will converge on some value of 2z ¥ o

as shown In Fig. AZ2.1.
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\ o

= > %
z, %, z3 z, '/’ 7~
Figure A2,1 Function F (z2) = g

In the present problem, under the action of

loads which are near ultimate, steel at many sections

yields and equations (42.6), (A2.7), (42.9), (A2.10) or
(A2.11) have to be used for such cases. As explained
before, the initial values for starting the iteration
for the first two equations are obtained from the
solution of equation (A2.5) while those for the last
three equations are obtained from the solutlion of
equation (A2.8). Both equations (A2.5) and (42.8)
consider no yilelding of steel and hence the stra}ns

e; and e, obtained from these equations will be
necessarlly smaller than those obtained from solutlons
of equations (A2.6), (A2.7), (A2.9), (A2.10) or (A2.11).
This means that the initial values used for starting

the iteration are much smaller than the final values;
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!/
that is, a case similar to the one when z< 7 (Pig.A2.1).
The situation is remedied as follows. It is

seen from Fig. A2.1 that unless 2Z the value of Z

k ’
at any kth iteration 1is positive, a convergence on Z = 7
is not possible. If at the end of any iteration AZ

turns out to be negative and larger in magnitude than'Zk,

instead of using Z,, " Zk +A‘Zk lequation (A2.12)]

we use,

Z =Z -2(AZ) (A2.13)

k41

This alteration in the method assures that Zlk will always

be posltive and a convergence on z=7 may be possible.
The above-mentiohed technique is used to

maintain the proper signs of the unknowns x and y (i.e.,

the strains e; and e, in the case of a positive M or

the strains e, and e; in the case of a negative M) by

using formulae similar to equation (A2.13). The proper

signs of the stralns are known from the conslderatlons

presented in Appendix I.
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APPENDIX IXIX

CONCISED FLOW-CHART AND DIGITAL COMPUTRER PROGRAM

MAIN PROGRAM

STATIC CASE

<. YES

'NOLCAS'

SUBROUTINES

START

Y

Print U,W,M,N,Q,e

1°%4

1

Ia the iteration cycle{ygs »

Just completed - an odd
numbered? i

}No

Check if end deflection
is within prescribed
tolerance

| NO

YES

If the iteration cycle
completed is No. 2,

change by some % ,
otherwis& choose
by extrapolation

l Check for failure

(No

Increase the load

and also H2447

Decrease the load by

'DTPRTS’
Read input data - including arch
geometry, properties of concrete
and steel, magnitude and type
of load, number of segments and
initial value of HB

1

'REACTN’
Calculate HA’ VA and VB

Y

'EQEQNS’® _ -
Obtain section forces M, N and Q
from equilibrium equations

1

YSTRN1®
With linear stress-strain curve

assumption, obtain ee4 and ee1

"STRN2'

1) Obtain e, and e by ‘Newton-
Raphson®’ procedure, then obtain
ey €50

2) Check yielding of steel and
use proper equations, if
necessary

—~ 3) If convergence is not possible

in 30 cycles

'DEFLNS''
Calculate e, and % at all sections;

L

iy

then obtain U's and ¥’s at all

sections.

0.01%, and also, HB

— U's, forces and

Print Failure, W's,

strains
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APPENDIX IV

CONCISED FLOW-CHART AND DIGITAL COMPUTER PROGRAM

DYNAMIC CASE

MAIN PROGRAM SUBROUTINES
'NOLCAD' | "LOAD "
Calculate load at prescribed time
~START-
Read input data \

including arch
geometry; magnitude
type and time~-dependi

'DISP i
Calculate U and W of all sections at
prescribed time based on U and W, UT"

ence of load; numben 4 W at . ¢ Al loulat
.4 an at previous times; so calculate
of segments; time velocities ’

interval ‘ 1

PRINT INPUT
"STRN®

Y Calculate e, X and ey, ep, e3 and
e4; Check yielding, unloading and
reloading of steel and set proper eqg

Calculate arch
section, natural
period, & constants and eg

l A

TFORCE'
Time t = to = 0; Calculate X and M - all sections
CALL LOAD;
Obtain Wr",UT"- ‘ 1
all sect. ‘ 'EQEQND'
<N Depending upon the type of loading,
. 1 choosing proper method, calculate §, W